Mathematical Statistics

Originanddevelopment

Mathematicalstatisticsisabranchofmathematicsdevelopedwiththedevelopmentofprobabilitytheory.Itstudieshowtoeffectivelycollect,organizeandanalyzedataaffectedbyrandomfactors,andMakeinferencesorpredictionsontheissuesunderconsideration,andprovidebasisorsuggestionsfortakingcertaindecisionsandactions.

Mathematicalstatisticsoriginatedfromvariousdescriptivestatisticalactivitiessuchasdemographicstatisticsandsocialsurveys.In2250BC,Dayu'swatercontrolwasdividedintoKyushuinaccordancewiththequalityofmountainsandrivers,humanandmaterialresources;YinZhouIntheera,theminefieldsystemwasimplemented,andthelandandhouseholdregistrationwerecalculatedaccordingtothepopulation.IntheSpringandAutumnPeriod,thestrengthoftheprinceswasoftenjudgedbythenumberofmilitaryvehicles.Itcanbeseenthatmilitarysurveysandcomparisonshavebeencarriedout.ThestatisticsofthenationalhouseholdregistrationandageintheHanDynastyarewelldocumented;TheYellowBookandtheFishScaleBookwereinitiallycompiled.TheYellowBookisanationalhouseholdregister,andtheFishScaleBookisanationallandmap,withtopographydrawn,andithasthenatureofmodernstatisticalcharts.Itcanbeseenthatourcountryhasattachedgreatimportancetostatisticalworkinthepastdynasties,butlackssystematicresearchandhasnotformedspecialworks.

InWesterncountries,statisticalworkbeganin3050BC.Egyptbuiltpyramidstocollectconstructioncostsandconductcensusesandstatisticsonthenationalpopulation.IntheAristotleera,statisticalworkbegantobecomerational.Evolution.Atthistime,theapplicationofstatisticsinhealth,insurance,domesticandforeigntrade,militaryandadministrativemanagementwaswelldocumented.ThetermstatisticsevolvedgraduallyfromthetermItaly.

Thedevelopmentofmathematicalstatisticscanberoughlydividedintothreestages:theclassicalperiod,themodernperiodandthemodernperiod.

Classicalperiod

(Beforethe19thcentury)

Thisistheformationanddevelopmentstageofdescriptivestatistics,andtheembryonicperiodofmathematicalstatistics.Duringthisperiod,theSwissmathematicianBernoulli(1654-1705)systematicallydemonstratedthelawoflargenumbersearlier.In1763,BritishmathematicianBayesproposedatheoryofinductivereasoning,whichwaslaterdevelopedintoamethodofstatisticalinference-Bayesianmethod,whichcreatedaprecedentformathematicalstatistics.TheFrenchmathematicianDiMofo(1667-1754)firstdiscoveredthedensityfunctionofthenormaldistributionin1733,andcalculatedtheprobabilityofthecurveinvariousintervals,whichlaidthefoundationfortheentiretheoryoflargesamples.In1809,theGermanmathematicianGauss(1777-1855)andFrenchmathematicianLegendre(1752-1833)independentlydiscoveredtheleastsquaresmethodandappliedittotheerroranalysisofobservationaldata,inthetheoryandapplicationofmathematicalstatisticsTheyhavemadeimportantcontributions.Henotonlyappliedmathematicalstatisticstobiology,butalsoappliedtothestudyofeducationandpsychology,anddemonstratedindetailthewiderangeofapplicationsofmathematicalstatistics.Heoncepredicted:"Statisticalmethodscanbeapplied.Invariousdepartmentsofvariousdisciplines".

Modernperiod

(fromtheendofthe19thcenturyto1945)

Themainbranchofmathematicalstatisticswasestablished,whichwastheformationperiodofmathematicalstatistics.Atthebeginningofthelastcentury,duetoThedevelopmentofprobabilitytheoryisclosetocompletetheoretically,coupledwiththeurgentneedofindustrialandagriculturalproduction,whichpromotesthevigorousdevelopmentofthissubject.

In1889,theBritishmathematicianPearson(1857-1936)proposedthemethodofmomentestimation,andthefollowingyearproposedthetheoryoffrequencycurve.In1900,theGermanmathematicianHelmetdiscoveredThec2testisproposedonthebasisofthec2distribution,whichisthefirstsmallsampledistributioninthehistoryofmathematicalstatistics.

In1908,theBritishstatisticianGossett(1876-1937)createdthetheoryandmethodofsmallsampletestinsteadoflargesampletest(ietdistributionandttestmethod),whichismathematicaltheoryAnotherbranchofstatistics-multivariateanalysislaysthetheoreticalfoundation.

In1912,theBritishstatisticianFischer(1890-1962)promotedthet-testmethodanddevelopednewbranchesofmathematicalstatisticssuchassignificancetestingandestimationandanalysisofvariance.

Inthisway,someimportantbranchesofmathematicalstatistics,suchashypothesistesting,regressionanalysis,analysisofvariance,orthogonaldesign,etc.,havecontentandtheoriesthatdeterminetheirappearance.Mathematicalstatisticshasbecomeasubjectofmathematicswithawiderangeofapplicationsanduniquemethods.

Modernperiod

(after1945)

RomanianAmericanMathematicalStatisticianVarade(1902-1950)devotedhimselftousingmathematicalmethodstomakestatisticsHehasmademanyimportantachievementsinlearningprecisionandrigor.Hedevelopeddecision-makingtheory,raisedgeneraldiscriminantproblems,createdsequentialanalysistheory,andproposedthefamoussequentialprobabilityratiotest.Wald’stwobooks"SequentialAnalysisandStatisticalDecisionFunctionTheoryareconsideredclassicsinthehistoryofmathematicaldevelopment.

Duetotheapplicationofcomputers,thetheoreticalresearchandapplicationofmathematicalstatisticshavebeencontinuouslydevelopedindepth,andsomenewbranchesandmarginalnewdisciplineshavebeengenerated,suchasoptimaldesignandnon-parametricstatisticalinferenceWait.

Currently,theapplicationrangeofmathematicalstatisticsisbecomingmoreandmoreextensive.Ithaspenetratedintomanyscientificfields,appliedtovarioussectorsofthenationaleconomy,andhasbecomeanindispensabletoolforscientificresearch.

Introduction

Definition

Mathematicalstatisticsisamethodbasedonprobabilitytheorytostudythebasiclawsofalargenumberofrandomphenomenainsocietyandnature.Itsmaincontentincludesparameterestimation,hypothesistesting,correlationanalysis,experimentaldesign,non-parametricstatistics,processstatistics,etc.

Features

Ittakestheobservationandexperimentofrandomphenomenaasastartingpoint,usesprobabilitytheoryasthetheoreticalbasistostudyrandomphenomena,selectsmathematicalmodelsforrandomphenomenabasedonthedata,andusesmathematicsDatatoverifywhetherthemathematicalmodelisappropriate,andthenstudyitscharacteristics,natureandregularityonanappropriatebasis.

Forexample,whenabulbfactoryproducesbulbs,afewoftheproductsonacertaindayareselectedfortesting.Beforethetest,itisnotknownhowlongthelifeofthebulbswillbeonthatday,theirprobability,andtheirdistribution.Afterthetest,thelifespanoftheseseveralbulbsisobtainedasdata,fromwhichtheservicelifeandqualificationrateofthebulbsproducedinthewholebatchcanbeinferred.Inordertostudyitsdistribution,usethemathematicalmodelprovidedbyprobabilitytheorytocarryouttheexponentialdistribution,findthevalue,andthenuseafewdaysofsamplingtesttodeterminetheappropriatenessoftheexponentialdistribution.

Alllinksofstatisticalwork

Whenusingmathematicalstatisticstosolveapracticalproblem,therearegenerallythefollowingsteps:establishamathematicalmodel,collectandorganizedata,performstatisticalinference,predictionanddecisionmaking.Theselinkscannotbecompletelyseparated,andtheyarenotnecessarilyintheaboveorder,andsometimestheyareinterleavedwitheachother.

①Selectionandestablishmentofmodel.Inmathematicalstatistics,amodelreferstoacertainassumptionaboutthepopulationunderstudy,andgenerallyspecifiesacertaintypeofpopulationdistribution.Theestablishmentofamodelshouldbebasedontheknowledgeofprobability,theprofessionalknowledgeoftheresearchproblem,pastexperienceandsamples(data)drawnfromthepopulation.

②Datacollection.Therearethreewaysofcomprehensiveobservation,samplingobservationandarrangingspecificexperiments.Comprehensiveobservationisalsocalledcensus,whichmeansthateveryindividualinthepopulationisobservedtodeterminetherequiredindicators.Samplingobservation,alsoknownasspotcheck,referstotakingapartfromthepopulationanddeterminingitsrelatedindexvalues.Theresearchcontentinthisareaconstitutesabranchofmathematicalstatistics.Calledasamplesurvey.

③Arrangespecificexperimentstocollectdata.Thesespecificexperimentsmustberepresentativeandmakethedataeasytoanalyze.Themathematicalproblemscontainedthereinconstituteanotherbranchofmathematicalstatistics,thatis,thecontentofexperimentaldesign.

④Dataorganization.Thepurposeistoextracttheusefulinformationcontainedinthedata.Oneformistodevelopappropriatecharts,suchasscatterplots,toreflecttheroughregularitiesorgeneraltrendsimplicitinthedata.Anotherformistocalculateseveralnumericalfeaturestocharacterizecertainaspectsofthesample'sproperties,suchassimpledescriptivestatisticssuchassamplemeanandsamplevariance.

⑤Statisticalinference.Referstomakingcertainconclusionsaboutthedistributionofthepopulationbasedonthepopulationmodelandthesamplesdrawnfromthepopulation.Datacollectionandorganizationarenecessarypreparationsforstatisticalinference,andstatisticalinferenceisthemaintaskofmathematicalstatistics.

⑥Statisticalforecast.Theobjectofstatisticalpredictionisthevaluethatarandomvariablewilltakeatacertaintimeinthefuture,orthevaluethatitwilltakewhenitisassumedtobeobservedundercertainconditions.Forexample,predictthemarketsalesvolumeofaproductinthenext3years,andtheheightandweightofa10-year-oldboyin3years.

⑦Statisticaldecision-making.Anactionplanbasedonstatisticalinferencesorpredictionsmadeandtakingintoaccounttheconsequencesoftheaction(expressedintheformofeconomiclosses).Thegoalistomakethelossassmallaspossible,or,conversely,tomakethegainaslargeaspossible.Forexample,astorewantstodeterminethepurchasequantityofacertainproductthisyear.Basedonasamplesurvey,thestore’sstatisticianpredictsthatthestore’ssalesofthisproductwillbe1,000piecesthisyear.Assumingalossof20yuanforeachbacklogofaproduct,andalossof10yuanforamissingproduct,adecisionaboutthequantityofpurchasesmustbemadeaccordingly.

Disciplinaryapplication

Mathematicalstatisticshavebeenwidelyandprofoundlyappliedinnaturalsciences,engineeringtechnology,managementsciences,andhumanitiesandsocialsciences.Technologyandpolitics,economyandsocietycontinuetodevelopandgraduallyexpand,butingeneraltermscanbedividedintotwocategories:⑴experimentdesignandresearch,thatis,tostudyhowtoobtainobservationdatamorerationallyandeffectively;⑵statisticalinference,Thatistostudyhowtousecertaindatatomakeasaccurateandreliableconclusionsaspossibleontheissuesofconcern.Ofcourse,thetwopartsarecloselyrelatedandshouldbegivenconsiderationinpracticalapplications.Butaccordingtotheoveralldesignofthismajor,ourmathematicalstatisticscourseonlydiscussesstatisticalinference.Mathematicalstatisticsisadisciplinethatstudiesthestatisticalregularityofrandomphenomenabasedonthetheoryofprobabilityanddataobtainedfromexperimentsorobservations.Thepurposeofthiscourseistoenablestudentstounderstandstatisticalinferencetestingandothermethodsandbeabletoapplythesemethodstomakevariousreasonableestimatesandjudgmentsontheobjectiveregularityoftheresearchobject.Masterthepointestimationandintervalestimationofoverallparameters.Masterthebasicmethodsandtechniquesofhypothesistesting.Understandtheprinciplesofsquareerroranalysisandregressionanalysis,andbeabletouseitsmethodsandtechniquestomakestatisticalinferences.

Related Articles
TOP