Generaldefinition
Italsoreferstothecharacteristicsofdifferentlevelscoexistinginthesamecupofcoffee.Thehighcomplexitymeansthattherearemoretypesofsensorystimulationthatcanbefelt;whatshouldbepaidattentiontoisthesefeelingsIncludingtheafter-rhyme,itisnotnecessarilylimitedtothepresentfeelingwhendrinking.
Algorithmus
Complexitatem (computercomplexitytheory)
Computationalcomplexitytheory(Computationalcomplexitytheory)iscomputationaltheoryThefirstpartisabouttheresourcesneededtostudycomputingproblems,suchastimeandspace,andhowtosavetheseresourcesasmuchaspossible.
Themostcommonresourcesstudiedbycomputationalcomplexitytheoryaretimecomplexity(howmanystepsmustbetakentosolvetheproblem)andspacecomplexity(howmuchmemoryisneededtosolvetheproblem).Otherresourcescanalsobeconsidered,suchashowmanyparallelprocessorsareneededinparallelcomputingtosolvetheproblem.
Timecomplexityreferstothetimerequiredtocompleteanalgorithminthefieldofcomputerscienceandengineering,andisanimportantparametertomeasuretheprosandconsofanalgorithm.Thesmallerthetimecomplexity,thehighertheefficiencyofthealgorithm,andthemorevaluablethealgorithm.
Spacecomplexityreferstothestoragespacerequiredtocompleteanalgorithminthefieldofcomputerscience,whichisgenerallyafunctionofinputparameters.Itisanimportantmeasureoftheprosandconsofanalgorithm.Generallyspeaking,thesmallerthespacecomplexity,thebetterthealgorithm.WeassumethatthereisaTuringmachinetosolveacertainprobleminacertaintypeoflanguage.Xwordsbelongtothisproblem.PutXintotheinputofthisTuringmachine.ThisTuringmachineneedstosolvethisproblem.Thetotalnumberofgridsintheworkzoneiscalledspace.
Complexitytheoryisdifferentfromcomputabilitytheory.Thefocusofcomputabilitytheoryiswhethertheproblemcanbesolved,nomatterhowmanyresourcesareneeded.Asabranchofcomputationaltheory,complexitytheoryistosomeextentconsideredtobea"spear"and"shield"relationshipwithalgorithmtheory,thatis,algorithmtheoryfocusesondesigningeffectivealgorithms,whilecomplexitytheoryfocusesonunderstandingwhyForcertaintypesofproblems,thereisnoeffectivealgorithm.
Complexionis (CPX);
TheconceptofcomplexitywasfirstproposedbyKolmgorov.Toputitsimply,thecomplexityofathingcanbemeasuredbythelengthofthecomputerlanguageusedtodescribeit.Itisgenerallybelievedthatthelongerthelengthofthecomputerlanguagedescribingathing,themorecomplexthething.Inthe1970s,Lempleetal.gaveadefinitiontothecomplexityofrandomsequencesintheresearchofinformationtheory.Theybelievedthatcomplexityreflectstherateatwhichnewpatternsappearinatimeseriesasitslengthincreases,andshowshowclosethesequenceistorandomness.Inthelate1980s,Kasperetal.studiedthecomplexityofrandomsequencesintheLem-Zivsense,andproposedspecificalgorithmsformeasuringthecomplexityofrandomsequences.ThecomplexitymeasureobtainedbythisalgorithmiscalledKccomplexity,anditispointedoutthatthisalgorithmissuperiortotheLyapunovexponent.Sincethecomplexityanalysismethoddoesnothavestrictrequirementsonthelengthofthesequence,itiswidelyusedinthefieldofsignalprocessing.
Priusquam calculare Kc, sequentia processere prius grossa, et consequentia binari, hoc est, singula puncta sequentiae exhiberi ababit, sic poteris = = " = " = " = " = = " = " = " - I - 1 " In inquisitione signalinformationis "0, 1" sequentia. ifxi
Kciscalculatedtofindthenumberofpatternscontainedinthesequencex,thespecificmethodistopassoneofthe“0,1”timeseriesAfterthestringofcharacterss(s1,s2,...,s.),addoneorastringofcharactersQtoseeifthecharacterQbelongstoSQv(SQvisobtainedbysubtractingthelastcharacterfromtheSQstring),ifitappearsThewordingofhasalreadybeenmentionedbefore,thatis,QisasubstringofsQ,thenthecharacteriscalled"copy".Itisconsideredthatthereisnonewpatterninthisprocess.Addthecharactertotheendofthestring,continuetoincreaseQ,andthenproceedJudgment;ifithasnotappearedbefore,then"insert"thischaracter,usea"·"toseparatethecharactersbeforeandafter"insert",andthinkthatanewpatternhasappeared:thenlookatallthecharactersbeforethelast"·"Tos,reconstructQ,repeattheaboveoperationuntiltheendofthesequenceandcalculatethesumofthenumberofpatternsfound.Forexample,thecomplexityofthesequence(0010)canbeobtainedbythefollowingsteps:
(1) Primi mores semper 0·;
(2)S=0,Q=0,SQ=00,SQv=0,Qe longae sententiae SQv,0·0;
(3)s=0,Q=01,sQ=001,sQv=00,Qd non pertinet ad sententias Qv,0·01·;
(4)S=001,Q=0,SQ=0010,SQv=001,Qbelongsto verboSQv,0·01·0.
Sothe number of patternsin the sequenceis3, id est, incomplexitas(4)=3. Sequentia 0000 0000. .
Numerus segmentorum definitur incomplexitate (n). Fere "0,1" sequentia habent (n) Tendtoa fixum valorem, id est:
limc(n)=b(n)=n/ln(n)
Ita, b(n) esttheprogressivebehaviorofarandomsequence,Youcanuseittonormalizec(n)toarelativecomplexity:
C(n)=c(n)/b(n)
UsethisfunctionToexpressthecomplexchangesofthetimeseries,itcanbeseenthattheC(n)ofacompletelyrandomsequencetendsto1,whileotherregularandperiodicmotionstendto0,whilethec(n)ofanincompleterandomsequenceisbetweenthetwo.between.
Processus-graminis non est necessario limitatus ad binarizationem, et quaternisatio (SunHongetal.2002) velthod-gramenti (ChenHongweiand ChenYazhu, 2004) canalso potest.