Esaedrico regolare

Characteres

La pinza ha le seguenti caratteristiche:

(1) Il corpo a sei lati ha 8 punti superiori e ogni vertice è collegato a tre costole.

(2) Il nippeng ha 12 nervature, ciascuna della lunghezza della nervatura uguale.

(3) 6 facce ci sono 6 facce, ogni superficie è uguale, la forma è esattamente la stessa.

(4) Body diametro of the positive hexahedron:

, where A is a long.

Superficies et volumen

Superficies

Because all surfaces of the positive six somariums are equal, all squares are square, so the Superficies of ​​the positive six somatostat

, In which A is the male surface of the positive hexahedral, and S is the Superficies of ​​the positive hexahedral.

Magnitudo

Il corpo positivo appartiene a un prismatico, la formula del volume del prisma è ugualmente applicabile, cioè il volume = area inferiore × altezza. Poiché le sei facce del corpo nifedrico sono uguali e sono tutte quadrate, il volume dell'esaedrico positivo = la lunghezza del diamante × lungo.

Sets a positive surface of a positive body to a, then its volume:

.

Conceptus Related

diametro

For example, as shown in Figure 1, a positive cube ABCD-

For A,

(1) first take the face-to-plane angle of the bottom surface (as line segment AC in Fig. 1), calculate, the length of AB =

;

(2) This face-to-plane AC and it intersects the rib, which is perpendicular to the upper surface of the upper bottom surface

is a body-to-corner, depending on the ticking theorem, it can be obtained, the length of the body diametro of the niphedral body =
.

Unitates

(1) La lunghezza è di 1 cm del corpo a sei facce positivo, il volume è di 1 centimetro cubo;

(2) il diamante è 1 pezzo Il niphedral, il volume è 1 ingranaggio cubico;

(3) La lunghezza è di 1 metro positivo sei, il volume è di 1 metro cubo.

pila radii

(1) Raggio esterno della sfera: raggio r = metà della diametroe quadrata del quadrato;

(2) Raggio: il raggio r = metà del lato quadrato del quadrato.

Planum truncation

con un troncamento piano, i seguenti triangoli, rettangolari, quadrati, pentagonali, pentagonali, esagono, esagono positivo, diamante, il trapezio, la punta specifica è la seguente:

(1) triangolo: una linea all'interno dell'intervallo di un vertice all'interno della diametroe della superficie opposta;

(2) Rettangolo: Dopo due bordi opposti o una nervatura;

(3) quadrato: parallelo a un lato;

(4) a cinque dimensioni: su quattro bordi e un vertice O il punto sulle cinque creste;

(5) esagono: il punto sulle creste;

(6) Sixth: the midpoint of the rib; / P>

(7) diamante: su relativamente vertice;

(8) trapezio: parallelo a due facce.

Expand Figura

L'espansione del corpo a sei lati Figura 2 è la seguente:

(1) 1, 4, 1;

(II 2, 3, 1;

(3) 2, 2, 2;

(4) III, 3;

Pulchra set

Theorema 1

Theorema 1: If the square edge is longer A, with the circular radius of the center is R, the circle is connected to the square with the square The square and four times of the length of the segment are all set.

(1) Consequens 1.1: Si latus quadratum ABCD est A, P punctum quodvis in suo circulo exteriori, erit;

valeat.

(2) Introductio 1.2: Si latus longitudinis quadrati ABCD est A, P punctum quodvis ab interiori ejus circulo inciso, erit;

(3) Introduction 1.3: If the n-shape (n = 2k) edge length is a, the circular radius of the center of the center is R, and the circle is arbitrary with the positive The square of the length of the N-shaped vertices The square of length is:

.

(4) Introductio 1.4: Si figura diametrois est m, radius circularis centri centri est centrum radius R, circulus quodlibet punctum longitudinis longitudinis. positivus N-informibus angulis posuit;

theorema 2

Theorem 2: If the frontal length of the active body is A, with the radius of the ball in which the ball is the ball is R, the squad is from the square of the length of the positive part of the positive body to:

(fixed value), four squares and:
(fixed value).

(1) Inference 2.1: If the prime of the prescription is A, Any point on the length of the pellet with the vertices of the square and the square of the length of the positive part of the positive body, and the four squares and "section> .

(2) inference 2.2: If the probe of the active body is A, the square of the push-to-race length of the positive part is anywhere in the square, and it is

, four squares and
.

Related Articles
TOP