Introductio
Logica NO
Logica E
OR logico
La priorità è: NOT AND OR
p>Operazioni dello stesso livello da sinistra a destra
In formal logic, logical operators or logical connectives connect sentences into more Complicated complex sentences. For example, suppose there are two logical propositions, "It's raining" and "I'm in the house", we can compose them into a complex proposition "It's raining, and I'm in the house" or "No is raining" or "If it is raining, then I am in the house". A new sentence or proposition composed of two sentences is called compound sentence or compound proposition.
Tabella 15-7. Operatori logici
Esempio th> | Nome | Risultato |
---|---|---|
$a e $b | E (AND logico) | TRUE, if both $a e $b are TRUE. |
$a o $b | O (OR logico) < /td> | TRUE, if either $a o $b is TRUE. |
$a xo $b | Xor (OR esclusivo logico) | TRUE, if $a o $b are different. |
! $a | Not (logion not) | TRUE, if $a is not TRUE. |
$a && $b | E (AND logico) p> | TRUE, if both $a e $b are TRUE. |
$a || $b | O (OR logico) | TRUE, if either $a o $b is TRUE. |
Causa quare duae diversae operatores "et" et "vel" sunt, quia praecedunt diversa operantem (vide praecedentem operantem).
Basic operators
Operatores fundamentales sunt: "non" (¬), "et" (∧), "vel" (∨), "conditio" ( →) et "duplices conditiones" (↔). "Non" est operatrix unary, sed solum unum operatur (¬ P). Caetera est operatrix binaria, quae duas res efficit ut enuntiationem implicatam efformet (P ∧ Q, P Q, P → Q, P Q).
Attende similitudinem symboli "et" (∧) et intersectionem (∩), "vel" (∨) et unionem (∪). Hoc non accidit: definitio intersectionis utitur "et", et definitio unionis utitur "vel".
Mensa veritas harum connexiones:
P th> | Q | ¬P | P ∧ and Q | P ∨ or Q< /i> | P → Q | P ↔ Q |
---|---|---|---|---|---|---|
T | T | F | T | T | T | T |
F | F | F | T | F | < p>F | |
F | T | T | F | T | T | F |
F th> | F | T | F | F | T | T | < /tr>
Ad numerum uncis reducendum requiritur regulae sequentiae: ¬ altior est quam , est altior quam , et ∨ est altior quam →. Exempli gratia, P Q ¬ R → S modus opportunus est scribendi (P (Q (¬ R)) → S.
Mollis Road Quotations
Logical operator:< /p>
Operatores logici exprimunt "et", "vel", "nisi" aliasque cogitationes in communicatione cotidiano.