Coefficiente di dilatazione lineare

Introductio

Conosciuto anche come coefficiente di espansione lineare. Quando la temperatura di una sostanza solida aumenta di 1°C, l'allungamento per unità di lunghezza è chiamato "coefficiente di espansione lineare". L'unità è 1/℃ o 1/K. Il simbolo è αl. La definizione è (vedi figura)

questo è,

lt=l0(l+al△t).

Duetodifferentmaterials,thecoefficientoflinearexpansionisalsodifferent,anditsvalueisalsorelatedtotheactualtemperatureandthereferencetemperatureselectedwhendeterminingthelength1,butbecausethelinearexpansioncoefficientofsolidsdoesnotchangemuch,usuallyItcanbeignored,andaisregardedasaconstantindependentoftemperature.

Thecoefficientoflinearexpansionofmaterialsisavailableinthe"MachineDesignManual".

Variationlaw

Thelawoflinearexpansioncoefficientchangingwithtemperatureissimilartothatofheatcapacity.Theavalueisverysmallatverylowtemperature,anditincreasesquicklywiththeincreaseoftemperature,andtendstobeconstantabovetheDebyecharacteristictemperature.Theabsolutevalueofthelinearexpansioncoefficientiscloselyrelatedtothecrystalstructureandbondstrength.Materialswithhighbondstrengthhavealowcoefficientoflinearexpansion.Comparedwithmetalmaterials,refractorymaterialshavestrongbondsandsmalllinearexpansioncoefficients.Generally,theαvalueofoxideisintherangeof(8~15)×10K,theαvalueofbinarysilicatematerialisgenerally(5.2~10)×10K,theavalueofcarbideis(5~7)×10Kdiamond1×1010Kquartzglassisduetotherelaxationofitsstructure,thelinearexpansionofthetetrahedroninthestructureisaccommodatedbythevoidsinthestructure,andhasaverysmallavalue(0.5×1010Knon-equaxialcrystalsalongdifferentcrystalaxesTheavalueisdifferent,especiallyformaterialswithalayeredstructuresuchasgraphite.Graphitehasastronginterlayerbondingforce,withasmalllayer-wiseavalue(1×1010K),andaweakinterlayerbondingforce,withavalueof27×intheinterlayerdirection.10KForcrystalswithstrongnon-equaxiality,thevalueofninacertaindirectionmaybenegative.Refractorymaterialscomposedofanisotropicpolycrystalsandrefractorymaterialscomposedofmultiphasepolycrystalswithdifferentphaseavalues,Internalstresswillbegeneratedinthematerialduringthefiringandcoolingprocess.Whenthegrainboundaryisinahighstressstate,thestrengthofthematerialwilldecrease,andevenmicrocrackswilloccur.Theporosityalsohasaneffectonthethermalexpansioncharacteristicsoftherefractory.Whentheporesmaketheparticlesinthematerialinter-particlesWhenthebondbecomesweaker,theavaluebecomessmaller.Theclosedsmallporesinthecontinuoussolidphasehardlyaffecttheavalue.Thelinearexpansioncoefficientofmultiphasepolycrystallineandcompositematerialscanbecalculatedbasedonthephasecomposition.AllcalculationformulasAllarebasedonthepremisethatnomicro-cracksaregeneratedundertheactionofinternalstressbetweenthephases,soitisactuallyanapproximateestimation.Forrefractorymaterialswithmultiplemicro-cracks,thedeviationofthemeasuredvalueandthecalculatedvalueofacanbeusedasameasureofmicro-crack.Ameasureofthenumberofdefectsinthestructure.

Linear expansion coefficient

Mensuraementmethod

Thecommonlyusedmethodsformeasuringthelinearexpansioncoefficientofrefractorymaterialsaretheindirectmethodoftheejectorrodandthedirectreadingmethodofthetelescope.ThenewlasermethodThedeterminationofthecoefficientoflinearexpansionhasalsoreceivedmoreandmoreattention.

Theejectortypeindirectmethod

Theejectormethodisaclassicmethod,whichusestheprincipleofmechanicalmeasurement,questo è,oneendofthesampleisfixedOntheendofthesupporter,theotherendisincontactwiththeejectorrod,thesample,thesupporterandtheejectorrodareheatedatthesametime,andthethermalexpansiondifferencebetweenthesampleandthesepartsistransmittedbytheejectorrodandmeasured.Itcanbedividedintovarioustypesofinstrumentsaccordingtotheposition(verticalorhorizontal)andthemeasurementmethodofexpansion(directmeasurement,electronicoropticalmethod).Themostcommonapplicationistheinductivedilatometer.Itssensorisadifferentialtransformer,Alsocalleddifferentialtransformerthermaldilatometer.Duetothelongsizeoftheejectorrodandthesupporter,theheatingconditionsofthehigh-temperaturefurnacearedifficulttomakethetemperaturedistributionuniform,andtheexpansionbetweentheejectorrodandthesupporterisdifficulttooffseteachother,sothemeasuredvalueofexpansionNeedtobecorrected.

Telescopedirectreadingmethod

Thetelescopedirectreadingmethodusesbinocularstodirectlyobservethechangevalueofthesampleexpansionunderhightemperatureinthefurnace,andobtainthelinearexpansioncoefficientthroughcalculation.Themeasurementtemperaturecanbeashighas2000℃,andthemicrometerontheeyepiecedirectlymeasurestheelongationofthesample.Thesampleusedislong,andtheheatingfurnacemusthaveenoughconstanttemperaturezone.Thedisadvantageofthismethodisthatitisgenerallynoteasytorecordautomatically.NowithasbeendevelopedAutomaticrecordingsystemfortimedphotography.

Lasermeasurement

Thermalexpansionhasdevelopedinrecentyears.Itscansthesamplewithalaserbeamandcontinuouslymeasuresthechangeinlengthofthesampleduringtheheatingprocess.Itispopularbecauseofitshighmeasurementaccuracyandthefullyautomaticcontrol,recordingandmulti-functionsystemcomposedofcomputers.Whenchoosingathermalexpansionmeasurementmethod,themainconsiderationisthetestrange,thetypeandcharacteristicsofthematerialtobetested,themeasurementaccuracyandsensitivity,etc.

Lifeapplication

Thecoefficientoflinearexpansionisoneoftheimportantpropertiesthatshouldbeconsideredwhenusingrefractories.Thefurnaceisusuallybuiltatroomtemperature,andthefurnacebodyexpandswhenusedathightemperature.Inordertooffsetthestresscausedbythermalexpansion,expansionjointsneedtobereserved.Thecoefficientoflinearexpansionisakeyparameterforthestructuraldesigncalculationofthereservedexpansionjointsandtheoverallsizeofthemasonry.Itiscloselyrelatedtothethermalshockresistanceofthematerialandthedistributionandsizeoftheinternalthermalstressofthematerialduringthermalshock.Inthemanufactureofcompositematerialsandmultiphasematerials,theinfluenceofthematchinganddifferenceoftheirlinearexpansioncoefficientsonthestructureandperformancemustbeconsidered.Inaddition,bymeasuringthecurveofthelinearexpansioncoefficientofthematerialwiththetemperature,itispossibletostudythematerialmineralanalysis,phasetransition,andthehealingandpropagationofmicrocracks.

Influencingfactors

1:Chemicalmineralcomposition.Thecoefficientofthermalexpansionisrelatedtothechemicalcomposition,crystallinestate,crystalstructure,andbondstrengthofthematerial.Substanceswiththesamecompositionanddifferentstructurehavedifferentexpansioncoefficients.Undernormalcircumstances,crystalswithatightstructurehavealargeexpansioncoefficient;whilesimilartoamorphousglass,theyoftenhaveasmallexpansioncoefficient.Materialswithhighbondstrengthgenerallyhavealowcoefficientofexpansion.

2:Phasechange.Whenamaterialundergoesaphasechange,itsthermalexpansioncoefficientalsochanges.Whenthepuremetalallotropetransforms,thelatticestructurerearrangementisaccompaniedbythemutationofthemetalspecificvolume,whichleadstothediscontinuouschangeofthelinearexpansioncoefficient.

3:Alloyingelementshaveaneffectonthethermalexpansionofthealloy.Theexpansioncoefficientofasingle-phaseuniformsolidsolutionalloycomposedofsimplemetalsandnon-ferromagneticmetalsisbetweentheexpansioncoefficientsoftheinternalcomponents.Theexpansioncoefficientofamultiphasealloydependsonthenatureandquantityoftheconstituentphases,andcanberoughlycalculatedaccordingtothevolumepercentageoccupiedbyeachphaseusingthemixingrule.

4:Theinfluenceoftexture.Singlecrystalsorpolycrystalshavetexture,whichleadstodifferencesintheatomicarrangementdensityofthecrystalsineachcrystaldirection,resultinginthermalexpansionanisotropy.Thethermalexpansioncoefficientparalleltothemainaxisofthecrystalislarge,andthethermalexpansioncoefficientissmallintheverticaldirection.

5:Internalcracksanddefectswillalsoaffectthethermalexpansioncoefficient.

Related Articles
TOP