Teorema di Bayes

Investigationes

Peopleneedtoestimatetheprobabilityofvariousconclusionsinreasoninganddecision-makingbasedonuncertaininformation.Thiskindofreasoningiscalledprobabilisticreasoning.Probabilisticreasoningisnotonlytheresearchobjectofprobabilityandlogic,butalsotheresearchobjectofpsychology,buttheresearchperspectiveisdifferent.Probabilityandlogicstudytheformulasorrulesofobjectiveprobabilityestimation;whilepsychologystudiesthelawsofcognitiveprocessingofpeople'ssubjectiveprobabilityestimation.TheproblemofBayesianreasoningistheproblemofconditionalprobabilityreasoning.Thediscussioninthisfieldhasveryimportanttheoreticalandpracticalsignificanceforrevealingpeople'scognitiveprocessingprocessesandlawsofprobabilityinformation,andguidingpeopletoconducteffectivelearningandjudgmentanddecision-making..

Theoremdefinition

Bayesianformula(publishedin1763):

ThisItisthefamous"Bayes'Theorema".In quibusdamliteraturis, P(B[1])et P(B[2)) fundamentales probabilitates vocantur, P(A│B[1]) estthehitratum, et P(A│B[2]) est falsum metum[1].

Applicationexamples

Drugaddictdetection

Bayes'theoremisveryusefulinthedetectionofdrugaddicts.Assumingthatthesensitivityandreliabilityofaroutinetestresultareboth99%,thatistosay,whenthesubjecttakesdrugs,theprobabilityofeachtestbeingpositive(+)is99%.Whenthesubjectisnottakingdrugs,theprobabilityofeachtestbeingnegative(-)is99%.Judgingfromtheprobabilityofthedetectionresult,thedetectionresultisrelativelyaccurate,butBayes'theoremcanrevealapotentialproblem.Supposeacompanywillconductanopiumusetestforallitsemployees.Itisknownthat0.5%ofitsemployeesusedrugs.Wewanttoknowhowlikelyeachemployeewhohasapositivemedicaltestistotakedrugs.Let"D"beanincidentofdrugusebyemployeesofthecompany,"N"beanincidentwhereemployeesofthecompanydidnottakedrugs,and"+"beanincidentwhereemployeesofthecompanytestedpositive.Available

  • P(D)representstheprobabilityofanemployeetakingdrugs,regardlessofothercircumstances,thevalueis0.005.Becausethecompany’spre-statisticsindicatethat0.5%ofthecompany’semployeestakedrugs,thisvalueisthepriorprobabilityofD.Bayes Theorem

  • P(N)repraesentat probabilitatem fanemployee enotaking medicamentorum. Patet, the valueis0.995, whichis1-P(D).

  • P(+|D)repraesentat thepositivedetectionrateofdrugaddicts. Thisis aconditionalprobability andalsoaprioriprobability.Sincethepositivedetectionaccuracyis99%,thevalueis0.99.

  • P(+|N) significat positivedetectionrationem non addictam, id est, probabilitatem offalsedetection. Thevalueis0.01, quia non-addictae, thedetectionis Theprobabilitas negandi 99%, ergo probabilitas in falsitate deprehensus ut affirmativus est 1-99%.

  • P(+)representsthepositivedetectionratewithoutconsideringtheinfluenceofotherfactors.Thevalueis0.0149or1.49%.Wecancalculateitbythetotalprobabilityformula: thisprobability=thepositivedetectionrateofdrugusers(0.5%×99%=0.00495)+thepositivedetectionrateofnon-medicamentorum(99.5%.0. :

  • Accordingtotheabovedescription,wecancalculatesomeoneTheconditionalprobabilityofdrugusewhenthetestispositiveP(D|+):

P(D|+)=P(+|D)P(D)/(P(+|D)P(D)+P(+|N)P(N))=0.99*0.005/0.0149=0.332215

Althoughourtestresultsarehighlyreliable,wecanonlydrawthefollowingconclusions:Ifsomeonetestspositive,thentheprobabilityofthatpersonisdrugtakingisonlyabout33%,whichmeansthatthepersonismorelikelytonottakedrugs.Themoredifficulttheconditionwetested(Dinthiscase,employeedruguse),thegreaterthepossibilityofmisjudgment.

Butifthispersonisre-examinedagain(equivalenttoP(D)=33.2215%,whichistheprobabilityofdrugaddicts,replacingtheoriginal0.5%),andthenusingBayes'theoremtocalculate,youwillgetTheprobabilityofthispersontakingdrugsis98.01%.ButthisisnotthestrongestpartofBayes'theorem.IfthispersonisretestedagainandthenrepeatedlycalculatedusingBayes'theorem,theprobabilityofthispersontakingdrugswillbe99.98%(99.9794951%),whichhasexceededthereliabilityofthetest.Spend.

Investmentdecision

Bayes'theoremisusedforinvestmentdecisionanalysiswhenthedataofrelatedprojectBisknown,butthereisnodirectdatatoproveprojectA,throughtheanalysisofprojectBThestatusandprobabilityofoccurrenceareanalyzedtoderivethestatusandprobabilityofoccurrenceofAproject.Ifweusemathematicallanguagetodescribe,thatis,whentheprobabilityP(Bi)oftheeventBiisknownandtheprobabilityP(A│Bi)oftheeventAundertheconditionthattheeventBihasoccurred,wecanuseBayes'theoremtocalculatetheoccurrenceoftheeventATheprobabilityoftheeventBiundertheconditionsP(Bi│A).Thebasicstepsforinvestmentdecision-makingaccordingtoBayes'theoremare:

1List theoccurrenceprobability ofprojectA under the condition of knownprojectB, that is,convertP(A│B)toP(B│A);

2Drawatreediagram;

3Findtheexpectedreturnvalueofeachstatenode,andfilltheresultintothetreediagram;

4Makeinvestmentprojectdecisionsbasedontheanalysisofthetreediagram.

Otherapplications

SearchgiantsGoogleandAutonomy,acompanythatsellsinformationrecoverytools,bothuseBayesianprinciplestoprovidesimilar(buttechnicalTheaboveisnotexact)result.ResearchersalsouseBayesianmodelstodeterminetherelationshipbetweensymptomsanddiseases,createpersonalrobots,anddevelopartificialintelligencedevicesthatcandetermineactionsbasedondataandexperience.

Bayes

Bayes(1701-1761,ThomasBayes),Britishmathematician.BorninLondonin1701,hewasapriest.BecameamemberoftheRoyalSocietyin1742.DiedonApril7,1761.Bayesmainlystudiesprobabilitytheoryinmathematics.Hefirstappliedtheinductivereasoningmethodtothebasictheoryofprobabilitytheory,andfoundedtheBayesianstatisticaltheory,whichmadecontributionstostatisticaldecisionfunctions,statisticalinference,andstatisticalestimation.In1763,RichardPricecollatedandpublishedBayes'result"AnEssaytowardssolvingaProblemintheDoctrineofChances",whichplaysanimportantroleinmodernprobabilitytheoryandmathematicalstatistics.Bayes'otherbook"AnIntroductiontotheDoctrineofOpportunity"waspublishedin1758.ManytermsusedbyBayesianarestillusedtoday.

Related Articles
TOP