monimutkaisuus

Yleinen määritelmä

Italsoreferstothecharacteristicsofdifferentlevelscoexistinginthesamecupofcoffee.Thehighcomplexitymeansthattherearemoretypesofsensorystimulationthatcanbefelt;whatshouldbepaidattentiontoisthesefeelingsIncludingtheafter-rhyme,itisnotnecessarilylimitedtothepresentfeelingwhendrinking.

Algoritmi

Monimutkaisuus (tietokoneiden monimutkaisuusteoria)

Computationalcomplexitytheory(Computationalcomplexitytheory)iscomputationaltheoryThefirstpartisabouttheresourcesneededtostudycomputingproblems,suchastimeandspace,andhowtosavetheseresourcesasmuchaspossible.

Themostcommonresourcesstudiedbycomputationalcomplexitytheoryaretimecomplexity(howmanystepsmustbetakentosolvetheproblem)andspacecomplexity(howmuchmemoryisneededtosolvetheproblem).Otherresourcescanalsobeconsidered,suchashowmanyparallelprocessorsareneededinparallelcomputingtosolvetheproblem.

Timecomplexityreferstothetimerequiredtocompleteanalgorithminthefieldofcomputerscienceandengineering,andisanimportantparametertomeasuretheprosandconsofanalgorithm.Thesmallerthetimecomplexity,thehighertheefficiencyofthealgorithm,andthemorevaluablethealgorithm.

Spacecomplexityreferstothestoragespacerequiredtocompleteanalgorithminthefieldofcomputerscience,whichisgenerallyafunctionofinputparameters.Itisanimportantmeasureoftheprosandconsofanalgorithm.Generallyspeaking,thesmallerthespacecomplexity,thebetterthealgorithm.WeassumethatthereisaTuringmachinetosolveacertainprobleminacertaintypeoflanguage.Xwordsbelongtothisproblem.PutXintotheinputofthisTuringmachine.ThisTuringmachineneedstosolvethisproblem.Thetotalnumberofgridsintheworkzoneiscalledspace.

Complexitytheoryisdifferentfromcomputabilitytheory.Thefocusofcomputabilitytheoryiswhethertheproblemcanbesolved,nomatterhowmanyresourcesareneeded.Asabranchofcomputationaltheory,complexitytheoryistosomeextentconsideredtobea"spear"and"shield"relationshipwithalgorithmtheory,thatis,algorithmtheoryfocusesondesigningeffectivealgorithms,whilecomplexitytheoryfocusesonunderstandingwhyForcertaintypesofproblems,thereisnoeffectivealgorithm.

Monimutkaisuus (CPX):

the complexity

TheconceptofcomplexitywasfirstproposedbyKolmgorov.Toputitsimply,thecomplexityofathingcanbemeasuredbythelengthofthecomputerlanguageusedtodescribeit.Itisgenerallybelievedthatthelongerthelengthofthecomputerlanguagedescribingathing,themorecomplexthething.Inthe1970s,Lempleetal.gaveadefinitiontothecomplexityofrandomsequencesintheresearchofinformationtheory.Theybelievedthatcomplexityreflectstherateatwhichnewpatternsappearinatimeseriesasitslengthincreases,andshowshowclosethesequenceistorandomness.Inthelate1980s,Kasperetal.studiedthecomplexityofrandomsequencesintheLem-Zivsense,andproposedspecificalgorithmsformeasuringthecomplexityofrandomsequences.ThecomplexitymeasureobtainedbythisalgorithmiscalledKccomplexity,anditispointedoutthatthisalgorithmissuperiortotheLyapunovexponent.Sincethecomplexityanalysismethoddoesnothavestrictrequirementsonthelengthofthesequence,itiswidelyusedinthefieldofsignalprocessing.

BeforecalculatingKc,thesequencetobeprocessedisfirstcoarse-grained,andtherandomsequenceisbinarizedhere,thatis,eachpointofthesequenceisrepresentedbyabit,soyoucanTheresearchedsignalinformationiscoarse-grainedtoforma"0,1"sequence.Assumingthatthetimetransmissionsequencetobeprocessedis{xi)(i=1,2,...,n),findtheaveragevalue.Ifxi≥averagevalue,setxi=1; ifxi

Kciscalculatedtofindthenumberofpatternscontainedinthesequencex,thespecificmethodistopassoneofthe“0,1”timeseriesAfterthestringofcharacterss(s1,s2,...,s.),addoneorastringofcharactersQtoseeifthecharacterQbelongstoSQv(SQvisobtainedbysubtractingthelastcharacterfromtheSQstring),ifitappearsThewordingofhasalreadybeenmentionedbefore,thatis,QisasubstringofsQ,thenthecharacteriscalled"copy".Itisconsideredthatthereisnonewpatterninthisprocess.Addthecharactertotheendofthestring,continuetoincreaseQ,andthenproceedJudgment;ifithasnotappearedbefore,then"insert"thischaracter,usea"·"toseparatethecharactersbeforeandafter"insert",andthinkthatanewpatternhasappeared:thenlookatallthecharactersbeforethelast"·"Tos,reconstructQ,repeattheaboveoperationuntiltheendofthesequenceandcalculatethesumofthenumberofpatternsfound.Forexample,thecomplexityofthesequence(0010)canbeobtainedbythefollowingsteps:

(1)Ensimmäinen hahmo aina0·;

(2)S=0,Q=0,SQ=00,SQv=0,Q kuuluu lauseeseenSQv,0·0;

(3)s=0,Q=01,sQ=001,sQv=00,Qei kuulu lauseisiinQv,0·01·;

(4)S=001,Q=0,SQ=0010,SQv=001,Q kuuluu sanaanSQv,0·01·0.

Eli sekvenssin kuvioiden lukumäärä on3,eli monimutkaisuusc(4)=3.Symbolisarjan0000...pitäisi olla yksinkertaisin,0·000...,c(n)=2.Lisäksi,kuten010101...pitäisi olla0.1.0101=3...c(n)=3 .

Kuten edellä mainittiin, merkkijono on jaettu segmenteiksi "·". Segmenttien määrä on määritelty monimutkaiseksi c(n).Lähes"0,1"sekvenssishavec(n)Tentofixedvalue,eli:

limc(n)=b(n)=n/ln(n)

Joten,b(n)on progressiivinen käyttäytyminen satunnaissekvenssistä,Voit käyttää sitä normalisoidac(n)suhteellisen monimutkaisuuden:

C(n)=c(n)/b(n)

UsethisfunctionToexpressthecomplexchangesofthetimeseries,itcanbeseenthattheC(n)ofacompletelyrandomsequencetendsto1,whileotherregularandperiodicmotionstendto0,whilethec(n)ofanincompleterandomsequenceisbetweenthetwo.between.

Karkean rakeisuuden prosessia ei ole välttämättä rajoitettu binarisointiin ja kvaternointiin (SunHongetal.2002) tai menetelmään, jota kutsutaan hienorakeiseksi (ChenHongwei ja Chen Yazhu, 2004) kanavaksi.Tämä tulos on tarkempi kuin monimutkaisuus.

Related Articles
TOP