Samankaltaisuusperiaate

Theintroductionofprinciples

Asmanymekaaniset tiedotusvälineet.Kuiten.The ExperimentalResultSareOnlyApplicableToCertSpecificConditionSandarenoTofuniversalsificance.Siksi jopa, että itisdiffultoreVealthEphysicalNaturefenomenononanandDescribetherelationshipBetweventHeVariousquanties.Säännöllinen suhteet.ThereArtemanphenomenethatarenotsuctablefordirectexperimentation.Faresxample, theairplaneistoolargeToDirectlyStudeThEflightProblemofTheAirLaneProTypeNewindTUnNel;.WePreferTousedceDAirPlanemodelSorenlargeDInSectModelSForResearch.Thenthequestionwearemostconcernedaboutiswhetherthephysicalphenomenondescribedfromtheexperimentalresultsofthemodelcantrulyreproducetheoriginalphysicalphenomenon?Iftheaccuratequantitativedataobtainedfromthemodelexperimentcanaccuratelyrepresenttheflowphenomenonofthecorrespondingprototype,thefollowingsamanlainenitiesmustbesatisfiedbetweenthemodelandtheprototype.

Samankaltaisuuskatsaus

(1)Geometricsamanlainenity

Geometriset samanlaisuusmuodot, ettäThemodelhasthesameshapeAsitsprototyyppi, butthesizecanbebefferent, andallcorrespondinglineardimensionsarproportionals.Thelinedimensionsherekanbediametri, pituus, karheus jne.Jos

Thelineaariset suhteet

TheareaproportionalconstantCanbeexpresseDasca = ap/am = cl^2

ThevolumeratioConstantCanbeexpresseDascv = vp/vm = cl^3

(2)Similarmotion

SimilarmotionMeansThatfordifferentFlowfenomena, vastaava vastaava jaAccelerationDirectionsAtAllCorResponingpointSintheflowfieldareconsistent, andtheratiosareequal, se, joka on twoflowswithsamanlainenmotion, heidän streamlinesandLinedflowspocraaregeomethersamanlainent..

ThespeedProportionalConstantCanbeexPresseDascv = VP/VM;

SininediDIimensionOftTimeisl/V, theTimeproportionalConstantisct = tp/tm = (lp/vp)/(lm/vm) = cl/cv

TheaccelationProportionalConstantCa = Ap/Am = cv/ct = ci/ct^2

(3)PowersamanlainenityPowersamanlainenitymeansthatthevariousforcesactingondifferentflowphenomenaatcorrespondingpositionsonthefluid,Forexample,gravity,pressure,viscousforce,elasticforce,etc., heidän directionscorrespondTothesame, ja valmistaja, jotka ovat twoflowswithsamanlainendynamics, theforcepolygonformedbyeachforceactingthecorrespestionpositiononthefluidisgeometricsamanlainen.

Yleisesti ottaminen, forcesactingonthefluidElementCleagravityfg, painePPP, ViscousforceFV, ElasticForceFeandsUrfaceSentenstTht.IfthefluidismonvingAtaccelation (hidastuvuus), jälkikäteenTheinertialforcefi, theaboveforcesWillFormForMaforcePolygon, SOFG+FP+FV+Fe+Ft+Fi = 0.

Tietysti, inmanypracticalproblems, Theabove-MagnedForcesarenoTequalyScortTant.SomeimessomeforcesMaynotexistoraresosmallthattheyareneglicheo, Suchasfeandft, AsshownThefigure.IftwoflowfenomenasasfyinggeometricalSimilemilementArefg, fp, fv, fi, fi, jne.., sitten, josFeSeforcesMeetthefollowingConditions, thetwofenomenaAaresAidTobedynamics.samanlainen.

POWERPROPORTALCONSTANTCANBEEXPRESTEDAS: CF = FGP/FGM = FPP/FPM = FVP/FVM = FIP/FIM =…

Whentheabovesamanlainenconditionsaremet,twoflowphenomena(Orflowfield)issamanlaineninmechanics.Amongthethreesamanlainenconditions,geometricsamanlainenityistheprerequisiteandbasisformotionsamanlainenityanddynamicsamanlainenity,dynamicsamanlainenityistheleadingfactorofflowsamanlainenity,andmotionsamanlainenityisonlyarepresentationofgeometricsamanlainenityanddynamicsamanlainenity;thethreearecloselyrelated,andoneismissing.Ei mahdollista.

Samankaltaisuuskriteeri

Inteory, AnyflowisUniquelyDeterMedByTheBasicDifferentialEquation,.Fortwosamanlainenflowphenomena,inordertoensurethattheyfollowthesameobjectivelaw,theirdifferentialequationsshouldbethesame.Thisisageneralsolutionforsamanlainenflows;inaddition,aspecificsolutionforaspecificflowisrequired,anditssingle-valuedconditionmustalsoberequired.samankaltaisuus.NämäUniquEconditions sisältää:

(1)Initialconditions,whichrefertothedistributionofphysicalquantitiessuchasflowvelocityandpressureatthebeginningoftheunsteadyflowproblem;Thisconditionisnotrequiredforsteadyflow.

(2)Boundaryconditions,refertothephysicalquantitiessuchasflowvelocityandpressureontheboundaryofthestudiedsystem(suchasinlet,outletandwall,etc.) Jakauma.

(3)Geometricconditions,refertothegeometricshape,positionandsurfaceroughnessofthesystemsurface.

(4)Physicalconditions,refertothetypeandphysicalpropertiesofthefluidinthesystem,suchasdensity,viscosity,etc.

Therefore,ifthetwoflowsaresamanlainen,theyareconsideredasthesingularityconditions.TheratioftheInertialforceactingonthetwosystemsTheotherforcessHeuldBecorrespest Equal -arvoinen.Inthefluidmechanicsproblem,ifthereareallthesixforcesmentionedabove,andthedynamicsaresamanlainen,theproportionsofthefollowingforcesmustbeequal.

TheratioofinertialForcetoPressure (Orpressuredifference): FI/FP

Theratioofinertialforcetogravity: fi/fg

Inertiaalisen voiman ja kitkavoiman suhde: for/TV: lle

TheratioofinertialforceeelasticForce: fi/fe

Inertiaalisen voiman suhde pintajännitykseen:/ft

TheaboveFiveFormulasRespectiveSInTroDuceFiveDIntensionNernNumbers, Whatareinorder:

1)EulernumberEu=2Δp/(ρ·V^2),forexample,laterOftenusedtoexpressthepressurecoefficientofthesurfacepressuredistribution,aswellastheliftcoefficientanddragcoefficient.Fyysisesti euler'snumberResentsTheMagnituderatiobetweentheinertialforceandhepressuregradient.

2)FroudenumberFr=V/sqrt(l·g),inphysics,Froudenumberrepresentsthemagnituderatiobetweeninertialforceandgravity,Isadimensionlessquantitythatcharacterizestheflowrate.

3)ReynoldsnumberRe=Vl/υ,inphysics,theReynoldsnumberrepresentsthemagnituderatiobetweentheinertialforceandtheviscousforceinasamanlainenflow,theflowRenumberSmall,meansthatthemagnitudeofviscousfrictionismuchlargerthanthatofinertialforce,sotheeffectofinertialforcecanbeignored;conversely,alargeRenumbermeansthatinertialforceplaysamajorrole,soitcanberegardedasnon-viscousFluidhandling.

4)MachnumberMa=V/c,inphysics,Machnumberrepresentsthemagnituderatiobetweeninertialforceandelasticforce,andisameasureofgascompressibility,Usuallyusedtoindicatetheflyingspeedoftheaircraftortheflowspeedoftheairflow.

5)WebernumberWe,physically,theWebernumberrepresentsthemagnituderatiobetweeninertialforceandsurfacetension.

ItcanbeseenthatEu,Fr,Re,MaandWearealldimensionlessnumbers,whicharecalledsamanlainenitycriterionorsamanlainenitycriterioninthesamanlainenitytheory.b>,theyarethebasisforjudgingwhethertwophenomenaaresamanlainen.Therefore,forphenomenathataresamanlainentoeachother,thevalueofthesamanlainenitycriterionofthesamenamemustbeequal.Conversely,iftwoflowingsingle-valueconditionsaresamanlainen,andthevalues​​ofthesamanlainenitycriteriaofthesamenamecomposedofsingle-valuedconditionsareequal,thetwophenomenamustbesamanlainen.

Detailedsamanlainenityprinciple

Thefirsttheoremofsamanlainenity

Twosamanlainenflowphenomenabelongtothesametypeofphysicalphenomenon,andtheyshouldDescribedbythesamemathematicalandphysicalequations.TheGeometricConditionsOftHeflowfenomenon (theboundaryShapeandsizeftheflowfield), fyysiset ehdot (fluiddensiteetti, viskositeetti jne..), rajakonnedit (jakelufysikaalisetquantitiesontheflowfieldboundary, subasevelocityDistribution, painostuksen jakelu jne..)Thereareinitialconditions(thephysicalquantitydistributionateachpointintheflowfieldattheinitialtimeoftheselectedstudy)mustbesamanlainen.TheseconditionSareCollectiivisesti.Asmentionedabove,thetwoflowphenomenaaremechanicallysamanlainen,andthephysicalquantitiesatthecorrespondingpointsinspaceandthecorrespondinginstantaneousphysicalquantitiesareincertainproportionstoeachother,andthesephysicalquantitiesmustsatisfythesamedifferentialequations.Siksi suhteettomat käsittely-.

Tosumup,theconclusioncanbedrawn:Physicalphenomenathataresamanlainentoeachothermustobeythesameobjectivelaws.Ifthelawscanbeexpressedbyequations,thephysicalequationsmustbeexactlythesameandcorrespondingSimilarcriteriaThevalues​​mustbeequal.Thisissamanlainentothefirsttheorem.Itisworthpointingoutthatthesamanlainenitycriterionofaphysicalphenomenonatdifferentmomentsanddifferentspatiallocationshasdifferentvalues,whilephysicalphenomenathataresamanlainentoeachotherhavethesamevaluesamanlainenitycriterionatthecorrespondingtimeandatthecorrespondingpoint.Therefore,samanlainenityThecriterionisnotconstant.

Thesecondtheoremofsamanlainenity

Onlywhentheexperimentalmodelissamanlainentotheresearchobjectitsimulatescantheresultsoftheexperimentbeappliedtotheresearchobject.Tojudgewhethertwophenomenaaresamanlainen,itisoftenimpossibletojudgewhetherthedistributionofthephysicalquantityinthecorrespondingtimeandspacemaintainsthesameratio.Forexample,theflowfieldofamodelairplaneinawindtunnelissamanlainentotheflowfieldofanactualflyingairplane.Usein vainTheAncomingFlowvelocityintHefarfrontOftHEAIRPLANEISKNOWNOWN, BUTHEFLOWFIELDILTIONTIONNEARTHEAIRPLANEISNOTNOTTON.Therefore,thetwocannotbejudgedbasedonsamanlainendefinitions.Aretheysamanlainen.

Twophysicalphenomenaaresamanlainenandmustbethesamekindofphysicalphenomena.Siksi TheDifferentialEquationsDescripfysicalfenomenamustbethesame.Thisisthefirstnecessaryconditionforsamanlainenphenomena.

Similarsinglevalueconditionsarethesecondnecessaryconditionforsamanlainenphysicalphenomena.Becausetherearemanysamanlainenphenomenathatobeythesamedifferentialequations,single-valuedconditionscansinglelydistinguishtheresearchobjectfromcountlessmultiplephenomena.Matemaattisesti ItSTheDefinitesolutionConditionHatmaKestheDifferentialEquationsHaveaUniquesolution.

Thesamanlainenitycriterioncomposedofphysicalquantitiesinthesinglevalueconditionisequaltothephenomenonofsamanlainenitythethirdnecessarycondition.

Converselyspeaking,whentheybelongtothesametypeofphysicalphenomenonandthesinglevalueconditionsaresamanlainen,thetwophenomenahavethecorrespondingrelationshipbetweentimeandspaceandthesamephysicalquantityconnectedwithtimeandspace.Ifthecorrespondingsamanlainenitycriteriaareequal,Andmaintainthesameratioofphysicalquantitiesatthecorrespondingtimeandspacepoints,whichalsoensuresthesamanlainenityofthetwophysicalphenomena.

Tosumup,samanlainenconditionscanbeexpressedas:Forthesametypeofphysicalphenomenon,whensinglevaluetheconditionsaresamanlainenandconsistofsinglevalueWhenthesamanlainenitycriterionofthephysicalquantitycompositionintheconditioncorrespondstothesame,thenthesephenomenamustbesamanlainen.Thisisthesecondtheoremofsamanlainenity,whichisasufficientandnecessaryconditionforjudgingwhethertwophysicalphenomenaaresamanlainen.

Periaatteet

SamankaltaisetPrinciplesandDimensismymethodShavesolveDaseriesOfproblemsInModelexperiments.

Tocarryoutamodeltest,firstencounterhowtodesignthemodelandhowtochoosethemediumintheflowofthemodeltoensurethatitissamanlainentotheprototype(physical)flow.Accordingtothesecondtheoremofsamanlainenity,thedesignmodelandtheselectionmediummustmakethesingle-valuedconditionssamanlainen,andthesamanlainenitycriteriacomposedofthephysicalquantitiesinthesingle-valuedconditionsareequalinvalue.

Whatphysicalquantitiesneedtobemeasuredduringthetestandhowtodealwiththetestdatainordertoreflecttheobjectiveessence?Thefirsttheoremofsamanlainenitystatesthatphenomenathataresamanlainentoeachothermusthaveasamanlainenitycriterionofequalvalues.Therefore,somephysicalquantitiescontainedineachsamanlainenitycriterionshouldbedeterminedintheexperiment,andtheyshouldbesortedintosamanlainenitycriterion.

Howtoorganizethemodeltestresultstofindtheregularity,sothatitcanbepromotedandappliedtotheprototypeflow?ItcanbeseenfromtheΠtheoremthattherelationshipbetweenvariousvariablesdescribingacertainphysicalphenomenoncanbeexpressedasarelativelysmallnumberofdimensionlessΠexpressions,andeachdimensionlessΠhasdifferentsamanlainenitycriteria,andthefunctionalrelationshipbetweenthemisalsocalledIsthecriterionequation.Forphenomenasamanlainentoeachother,theircriterionequationsarealsothesame.Therefore,thetestresultsshouldbesortedintotherelationshipbetweensamanlainencriteria,whichcanbepromotedandappliedtotheprototype.

Reynoldsnumbersamanlainenitymethod

Inordertobetterexplaintheapplicationofthesamanlainenityprinciple,thefollowingintroducesanapproximatemodelmethod:Reynoldsnumbersamanlainenitymethod

Kohdepracticalflow, HeReMainyAffectedByviscousforce, PressureanDinertialForce.Forexample,ifthefluidflowsinapipewithafullcross-section,sincethereisnofreesurface,thereisnosurfacetensioneffect,sotheWesamanlainenitycriterioncanbeignored;gravitydoesnotaffecttheflowfield,sotheFrsamanlainenitycriterioncanbeignored;iftheflowvelocityisverylowcomparedtothespeedofsound,Thecompressibilityeffectcanalsobeneglected,thatis,itisnotnecessarytoconsidertheMasamanlainenitycriterion.ThesameistrueForthelow-SpeeDairflowaroundTheObjecTortEelasticForceonthefluidaroundTheSubmarineDeepwaterAndTheCorresioningwaterFlow.

Fromthepointofviewofmechanicalsamanlainenity,iftwoflowfieldshavethesamedirectionandthesamemagnitudeofforceactingonthecorrespondingpoints,thedynamicsaresamanlainen.Inthecaseofconsideringonlythethreeforcesofviscousforce,pressureandinertialforce,inordertomaketheforcetrianglesamanlainen,itonlyneedstosatisfythatthetwosidesareproportionalandtheincludedanglesareequal,thatis,theinertiaofthemodelflowatthecorrespondingpointsTheforceandtheviscousforceareinthesameproportionsastheinertialforceandtheviscousforceactingontheflowofobjects.Siksi AslongastheCorrespondingPointMeetsThereynoldsnumberequal.Fromamoregeneralsamanlainenitytheorem,iftwoflowsaresamanlainen,thenumberofsamanlainenitycriteriacorrespondstothesame,andthesamanlainenitycriterionequationderivedfromtheΠtheoremisalsothesame.Amongthe(nk)samanlainenitycriteria,(nk-1)istheindependentsamanlainenitycriterion,ordecisivesamanlainenitycriterion(equivalenttotheindependentvariableofthefunction),andoneisthenon-independentsamanlainenitycriterionorthenon-deterministicsamanlainenitycriterion(equivalenttoThedependentvariableofthefunction).ForthFlowsitionationThaTonlyConsidersTheEffectofiscoSforce, PressureanDinertialForce, siellä synoldscriterionandothercriteriaRelatedToometricDimensionsareregardedasindicencecriterit ja theeulercriterionisanonista riippuvainen kriteerit.

Underthepremiseofgeometricsamanlainenity,thedecisivecriterionforsamanlainenityofflowphenomenaisonlytheReynoldscriterion,andthesamanlainenitythatthemodeltestmustcomplywithiscalledReynoldsphaselikeness.

Related Articles
TOP