Optinen järjestelmä

IdealopticalSystem

TheidealopticalSystemisanImagingSystemTatcanproduceaclear.ThebeamsinwichichLightrayoritsextension

linja -allinterscatTheSamePointAseCalledCentricBeams.AftertheCidentConcentricBeamPassestHroughtheidealopticalSystem,.THEICHINTERICHICIDENTOUTOUTONCONCONTREMPAMAMSKELLEDTHEOBjectPoint jaMagePoint, vastaavasti.TheidealopticalSystemHashefollowingProperties: ①AfterAllighTraysCrossingTheObjectpointPassthruurtheopticalSystem.päinvastoin.ThepointwhichthispairofobjectImagesCanbeinterChangeDiscAledTheConJugatepoint.②AlchStraightLineOnTheObjectSideCorrordStoastRaightLineOnTheImagesIDECALLEDACONJUGATINE;.③OndplanePerPendicularToTheopticalAxis, ItConjugatesurfaceisStillperPendicularToTheopticalAxis.④ForapairofconjugatEplanesperpendiculartheopticalxis, thelatermagnificationisconStant.ThatheoryofStudingTheOne-välinen vastaava vastaavuusBetweenthetWoobjectsinanidealopticalSystemCalledgausianoptics.ItwasFirstClarifiedbyThegermansCientistc.Gaussinhisworkin1841.Infact, siellä.ThecoxialsphericalSystemCanapProxydyMeetTeleSofanidealopticalSystemunderParaxialConditions.

BasePointAndBasesurface

UseatPairsOfPecialPointSandsurfacesthatDetterMinetHeconJugationRelationshipBetWeTheObjectIMageOfanidealopticalSystem.

FocusandfocalLane

ThepointheopticalAxtThaTisconjugateTheinfinityImagePointCalledTheObjectFocus (Orthefirstfocus).AsF;thepointontheopticalaxisthatisconjugatetotheinfinityobjectpointiscalledtheimage-sidefocalpoint(orsecondfocalpoint),andisdenotedasF'.TheplanespassingthroughtheFandF′pointsandperpendiculartotheopticalaxisarecalledtheobjectfocalplane(firstfocalplane)andimagefocalplane(secondfocalplane).

Päämiehet jaPrincipansurface

ApairofconjugatesurfaceswithalateralMagnicationequalto1calledThePrinciPalsurface jaTheintersctionoftHetThetRinciPalSUrfacts japtheopticalAxisCalledMainpoint.AnylightrayemittedfromthefocusoftheobjectF,afterpassingthroughtheopticalsystem,becomesarayparalleltotheopticalaxis.ExtendthepairofconjugatelightraystogettheirintersectionpointM,thisintersectionpointThesetof,constitutesthemainsurfaceoftheobject(thefirstmainsurface),andtheintersectionofthemainsurfaceandtheopticalaxisHiscalledthemainpointoftheobject(thefirstmainpoint).Afterthelightparalleltotheopticalaxisenters,theoutgoinglightintersectsattheimagefocalpointF'.ExtendthepairofconjugatelightraystoobtaintheintersectionpointM'.ThesetofintersectionsconstitutesTheprincipalsurfaceoftheimageside(thesecondprincipalsurface),theintersectionpointH'betweenitandtheopticalaxisiscalledtheprincipalpointoftheimageside(thesecondprincipalpoint).Thetwoprincipalsurfacesareapairofconjugatesurfaces ja thetwoprincipalpointSareaPairofConjugatePoints.TheHeightOfanypairOfConjugatePointSonthetwomainsurfacesFromtheopticalAxisisequal ja thelateralSuurennusis1.

Solmut jaNodalplanes

ApairofconjugatepointwithanangularSuurennus1ontheopticalAxisiscalleDanode, joka ohjaaSESTHRoughTheNoDeanDisperPendiculartheOpticalAxis.Pinta.

Objekti-kuvaus

Ingaussoptics, thespesificopticalSystemisabtractedasasystemconsistingofabasePointAndabasesurface.TheObjectDistance, ImageDistanCeandfocallengthareaLbasedontWomainPointScalculationAbenchmark.ObjectpointQandobjectfocusFtothemainobjectpointHdistancesandfrespectivelytheobjectdistanceandtheobjectfocallength;theprincipalpointoftheimagesideH'totheimagepointQ'andthefocuspointoftheimagesideF'Thedistancesaretheimagedistances'andtheimagesidefocallengthf'.ThePositionalRelationshipBetWeenObjectSandImagesExpressedByThefowingFormula:

f'/s'+f/s=1

Tämä formulaRaSCalledGausianFormula.Thepositionofobjectsandimagescanalsoberepresentedbyxandx'.Therelationhipbetweenthetwois:

xx'=ff'

Tätä kaavaa kutsutaan Newtonin kaavaksi.

Suurennus

TheratioftheconjugatequantityRelatedTheObjectHandTheImage.ITCANBEDIVIDEDITTOTHREETYYPES: HORISONTALMATIMUS, VERTICALMATIOINTIADALAUS.

Vaakasuuntainen suurennus

Theratiooftheimageheighty'totheobjectheighty,alsoknownastheverticalaxismagnification.βmeans:

β = y '/y = -ns'/n's

wherenandn'aretherefractiveindexoftheobjectspaceandtheimagespace.

Pitkittäinen suurennus

Theratioofthelongitudinaldepthoftheimagealongtheopticalaxistothelongitudinaldepthoftheobjectontheopticalaxis,expressedbyα.Therelationshipbetweenαandβis:

α=β2n'/n

Kulmakarvaus

Theanglebetweentheemittedlightandtheopticalaxisu'andtheincidentTheratiooftheangleubetweenthelightandtheopticalaxis,expressedbyγ,namely:

γ=u'/u=tanu'/tanu=ny/n'y'

Siksi:

n'y'u'=nyu

ThisTheLagrange-Helmholtztheorem.

THETHREEMAGNICATIONSSHEEFOLOWINGRelationhip:

αγ=β

Aukko

AnopticalelementThatRestStHelightBeamPassinghroughtheopticalSystem.ItCanbetHeframeOftheopticalelement (linssi, peili jne.) itse, Oritcanbeanadditionalopaquescreenwithhole.ThecenterofthediaphragmisUSUSONTheopticalAxisandperPendicularthoTheopticalAxis.

Kumpikinoptinen.Sisarat, iTisaroundhole.Joskus FixedorvariabletedIctedLightholesareaddedTothesystem.KAIKKI KAIKKI, ONELIGHOLEMUSTPLAYAROLILIMIATIONTHEAPERTUREANGLEOFTHEON-AXIPPONTIONIMAGINGBEAMIA; ERITYLIGHOLEPLAYSAROLIMILIDIONITTIOTTHEIMAINGRANGE.SucanapeCtureCalleDiaphragM: TheFormercalledanapeTediaphragmoraneffectiveDiaphragm; thelatteriscalleDafielddiaphragm.AnyopticalSystemmusthavesuchtwodiaphragms.

Aukkodiaphragm

Theemultiplediaphragms, ThelimitingeffectontheBeamisthegreateest, thatis, thediaphragmthatDetterInestHeszefthefagingbeam, alsoknownastheeffechediaphragm.TheaerturediaphragmcanblocktheLightTatediatesfromtheparaxiaLightIntheBeam.

Koska.TheImageWithTheSmallESTANGLE, ORtheImageWithTheSmallestaPerture WHIENTHEOBjectisatInfinity, MustBetheaperTuRESTOP.TheimAgeftHeaperturediaphragmintheobjectSpaceSisCalledtheRancepuLil, jaSopeningangleTheObjectPointSiscalledTheBeapaTureanglefleOftheobjectide.Samoin theamerturediaphragmisformedIntoanImageInTheImagespaceByTheopticalpartsbehindit, nimeltäänTheexitPupiil.ItmustaltaSobeanapeCtureImageWithTheSMallestOpingangleOftheImagePointtonTheAxis ja thisopeningleNangleSTheBeamOftheMageSide.Kulma-.TheTencancepupiil, aperturestoPandexitPupilarEconjugoitu.IfthediaphragmaberrationisNegleted, theAntrancePilisthecommonEnChanceOftheMaingBeamatallpointSheObjectLane.ThelightPassinghrutonthecenterofTheaperturediaphragMiscalledTheChiefray ja ByOftheConjugaterelationship, italSopassestHrughtheCenterOftheTheRancePuPilandTheCenterofThexitPuL.Siksi iTisGenerallySaidThatTheChiefrayisTheCenterLine OFTheIragingBeam.

TheAnerturediaphragmintheopticalSystemisrelatedToManyFactors.Unettomuudet,.Faresxample, theexitPilofTheVisualopticalSystemMustbelocountSidetheEyePiecesothatthePuPilofTheyecancOnCidewithit;.Tyydyttäminen, theaperturetopisalsorelatedToTeaberrationCorctionAndThelateralSizalsOftheptheSysteem- ja ohjasajalle,.

Kenttäkalvo

ThediaphragmthatDetterminestherangeOfVision.ThefieldDiaphragmCandeMetterMineTeSizeOftHefieldOfView.ThefieldDiaphragmformedByThefrontOpticalSystemiscalledtheThanceWindow ja ImageformedByTherearSystemCalledTheExitWindow.

ThefielddiaphragmisalightHoleintheopticalSystemTatDetermineSIngingRange.InsystemsWithInterMedIaterealImagePlanes (SuchaskeplertelescopeSandmikroskoopit) ja Systemsemswithrealimageplanes (sucasfotographicsystems), The FieldDiaphragmissetonThisimagePlane.TheImageOftheKenttäkalvointheobjectSpaceformedbytheopticalpartsinfrontOfitiscaledtheTrancewindow.TheanitoPenStothEcenterOftheThancePilistthesMallestofallapeCtureMages- ja ThisLangeSisCalledTheFieldangle.Samoin theImageformedbytheopticalpartsbehindthefielddiaphragmintheImagespacecalledTheExitWindow.TheTenceWindow, KenttäkalvoandexitWindowarealSoconjugat.WhenthefielddiaphragmissetontherealimagePlaneORTEInterMedIaterealImagePlane, theentrancewindowandexitwindowarecoincidentwiththeobjectplanedtheImagePlanerespective- jaTheFieldOfViewHasaclearboundaryatthistimeMy.InsituationswHerethereisnorealImageorterMedIaterealImagePlane, Suursuhde,.ITSCLEARAPERTUREPLAYSAROLEIMILIDATIONTHEFIELDOFVIEW.TheapertureofthetelescopeObjecveLensthefielddiaphragmtHatDetterMinestherangeOftHisleFieldFView.On selvää, että AincidentWindowdoesNotCocidiThtheobjectPlaneaThistime jaeSeisNocLearoundaryOftheFieldOfView.

Relativeaperture

TheratiooftheobjectivelensdiameterDtothefocallengthfintheimaginginstrument.Thephysicalquantityusedtodescribethelight-gatheringabilityoftheobjectivelens,becausetheluminousfluxdensityontheimagesurfaceisproportionalto(D/f)2.TÄTÄ.FotographicLensisequippedwithanadjustablediaphragm (yleisesti tunnettua astianterture), joka on annettu.Aseriesoffnumbersareengravedonthelens.WhentheFnumberisreducedby2-1/2timesoftheoriginalvalue,theluminousfluxdensitywillincreaseby2times.ThegeneralFnumberseriesvalues​​are

1,1.4,2,2.8,4,5.6,8,11,16,22,...

Thevalues​​oftheabovefilesarecalculatedbythefollowingformula(Roundedup):11

Aukkofactor(Fnumber)=(21/2)x

xisapositiveinteger,calledtheindexoftheaperturecoefficient,alsocalledtheAVvalue.IntheaboveF-numberseries,thevalues​​oftheadjacenttwogearsdifferby2times,thecorrespondingluminousfluxdensitydiffersby2times,andtheAVvaluediffersbyonelevel.

Vinjetin ilmiö

UnderidealCircumSences, TheBeamSattheon-akselindoff-akselikohtainen.IftheFieldOfViewNottooBig, TheImagesurfacelluminanceOftheTireFieldOfViewisBasInformIform.Kuitenkin inactualopticalSystems, TheOff-AxispointImagingBeaMisoftenlimitionByTheLight-Passingholefotheroptikaaliset puolet.Asaresult, theoff-akselipisteensuchsmallerthantHatoftheon-akselipiste.Tämä ei ole yhtäkään akselipisteensalsoimagedwithabealoflight, joka täyttyy.Siksi inordertoimproveTheImingQuality of theoff-akselispointindathelateralsizalSoftheopticalpartsisnotparticularlylarge, teemathodofaprappratiivisesti imeytymis-.Tämä fenomenonin,.Kauhealle akselille.Tietysti, eniten opicalSystemLallocifeDegreeOfVignetting.

Kuvavirta

TheImagingBeamofanObjectpointisaspatiALightConewiththeobjectpointasthevertheTheTheRancepupilastheBase.AftertheBeamPassestHroughtheopticalSystem, sen rakennevaihto.FooraxisymmetricopticalSystems (MossystemstemsbelongtoThiscategory), Theon-akselikohtainen.InordertofacilitaTheTheNandStanctionsTructurefishOnt, The PlanebeamonthetwocharakteersurfacesisUsuurutedfordescription.

Suunnittelu.DuetotheaxisymmetricNatureftheopticalSystem, akselin ulkopuolinen offpointpointScanalwaysbetakenontHEdRawingplane, thatis, thepaperplaneisthemeridianplane.ThebeaminingonthemeridianPlanecalledthemeridianbeam.On selvää.

The PlanecongingTheChiefrayAndperPendiculartothemeridInPlaneCalledTheSagittalNane.TheBeaminingonthesAgittalNaneSiscodedTheAgittalBeam.On selvää,.SincethecheefrayChangesits DirectionByefractionAndReflektionOfeachSurfathesystem, thesagittalPlanealSochangesfacebyfaceinsteadofaunifiedplane.

DueToTheaxialsymmetriaopticalSystem, Theon-AxisspotBeamdoesnotneedTobeseparatedfromthemolecularmeridianbeamandTheSagittalbeam ja theoff-axisspotbeammustbesymetricalTemeridianPlane.

Poikkeavuus

Theimageformedbythelens (Orlensgroup) ISNOTEXACTLYSIMILARTOTHEORIGINALAPACENCE.BacausetheangleOftheLightemitTyByTheObjectpoint jathemainAxisofThelensistoolarge, itisfarawayfromtheaxis, ortherefractiveDexOfTheLensMaterialChangeswithTheWavelengthTheLightOhtheLightEnceftHEntheLensMathtHtheWavelengy ofTheLightheLightHelens.ThesizeofabertrationReflectsThePRosandConsOfIsingQuality.VÄLIMETTYVÄT 7KindSofaberraatiot; formonokromaattiset valot, thereare5kinds, nimittäin pallomaisetberraatio, kooma, astgmatismi, kaarevuuskielto ja disristing.Forpolykromaattiset valot, thereareTwokindsofchromaatterabertrations, nimittäinxialchromaattisetberrationdverticalChromaattPoikkeavuus.Eliminointi.

Symmetrinen Koaxialdrawing

The PropertiesOfsymmetricalCoaxial

①Theobjectpointontheopticalaxis,theimagepointisalsoOntheopticalaxis;②Theobjectpointinthesectionpassingtheopticalaxisiscoplanarwiththeimage;③Thepropertiesofanysectionpassingtheopticalaxisarethesame;④Aplaneperpendiculartotheaxishasthesamemagnificationinthesameplane;⑤Knowingthepositionandmagnificationoftwopairsofconjugatesurfaces,orknowingthepositionandmagnificationofapairofconjugatesurfaces,plusthetwopairsofconjugatepointsontheopticalaxis,candeterminetheimagingoftheidealopticalsystem.

ProflocbyDrawingMethod

①ThePosition jaMagnicationOftWoPairsOfConjugatSurfaceSare.THECONJUGATESURFACE, AswellasthePositionsOfThetThetTofConjugatepointSontheaxis, Areshownasfollows

Related Articles
TOP