Matematiikan ala
1.Matematiikan historia
2.Matematiikan logiikka ja matematiikan perusteet
a:deduktiivinen logiikka (kutsutaan myös symbolilogiikaksi),b:todistusteoria (kutsutaan myös metamatematiikaksi),c:rekursioteoria,d:malliteoria,e:aksiomien joukkoteoria,f:matemaattinen perusta,g:matemaattinen logiikka ja muut matematiikan perusteet.
3. Lukuteoria
a:alkeislukuteoria,b:analyyttinen lukuteoria,c:algebrallinen lukuteoria,d:transsendenttilukuteoria,e:diofantiineapproksimaatio,F:lukujen geometria,g:todennäköisyyslukuteoria,h:laskennallinen lukuteoria,i:lukuteoriaja muut kohteet.
4. Algebra
a:linearalgebra,b:ryhmäteoria,c:kenttäteoria,d:lieryhmä,e:liealgebra,f:Kac-Moodyalgebra,g:rengasteoria(sisältää kommutatiivisen rengas-ja kommutatiivisen agebra,assosiatiivisen ja assosiatiivisen agebra,ei-assosiatiivisen ja ei-assosiatiivisen agebra, ei-assosiatiivisena:,etc-assosiatiivisen br. hilateoria,j:universaalialgebrateoria,K:kategoriateoria,l:homologiaalgebra,m:algebraKteoria,n:differentiaalialgebra,o:algebrallinen koodausteoria,p:muut aiheet.
5. Algebrallinen geometria
6. Geometria
a:Perusgeometria,b:euklidinen geometria,c:ei-euklidinen geometria (mukaan lukien riemanniangeometria jne.),d:pallogeometria,e:vektori ja tensorinalyysi,f:affinegeometry,g:projektiivegeometry,h:differential,frajktalgeometry:k. geometria muut aiheet.
7.Topologia
a:pisteasetustopologia,b:algebrallinen topologia,c:homotopyteoria,d:pieniulotteinen topologia,E:homologiateoria,f:ulotteisuusteoria,g:topologia hilassa,h:kuitukimpputeoria,i:geometrinen topologia,j:singulaarisuusteoria,k:differentiaalitopologia ja muut.
8. Matemaattinen analyysi
a:Differentiointi,b:Integraal,c:Sarjateoria,d:Muut matemaattisen analyysin aiheet.
9.Epästandardianalyysi
10. Funktionteoria
a:Reaalimuuttujafunktioteoria,B:yksittäisten ja monimutkaisten muuttujien funktioteoria,c:monikompleksimuuttujien funktioteoria,d:funktion lähentämisen teoria,e:harmoninen analyysi,f:kompleksimanifold,g:erikoisfunktioteoria,h:funktioteoriaja muut kohteet.
11. Tavalliset differentiaaliyhtälöt
a:laadullinen teoria,b:vakausteoria.c:Analyyttinen teoria,d:muut kohteetinäärisiin differentiaaliyhtälöihin.
12.Osittaiset differentiaaliyhtälöt
a:ellipsiosadifferentiaaliyhtälöt,b:hyperboliset osadifferentiaaliyhtälöt,c:paraboliset osadifferentiaaliyhtälöt,D:epälineaariset osadifferentiaaliyhtälöt,e:osittajadifferentiaaliyhtälötja muut tieteenalat.
13.Dynaaminen järjestelmä
a:Differentiaalidynaaminen järjestelmä,b:Topologinendynaaminen järjestelmä,c:Monimutkainen dynaaminen järjestelmä,d: Muut dynaamisen järjestelmän alat.
14.Integra-yhtälö
15. Toiminnallinen analyysi
a:Lineaarioperaattoriteoria,B:variaatiomenetelmä,c:topologinen lineaariavaruus,d:Hilbertspace,e:funktiotila,f:Banachspace,g:operatoralgebra:mitta ja integraali,i:yleisfunktioteoria,j:Epälineaarinen funktion analyysi,k:muut funktionaalisen analyysin osa-alueet.
16. Laskennallinen matematiikka
a:interpolaatio- ja likiarvoteoria,b:numeerinen ratkaisu,c:osiadifferentiaaliyhtälöiden numeerinen ratkaisu,d:integraaliyhtälön numeerinen ratkaisu,e:numeroalgebra,f:diskretisointimenetelmä jatkuville ongelmille,g:satunnainen.
17. Todennäköisyysteoria
a:geometrinen todennäköisyys,b:todennäköisyysjakauma,c:rajateoria,d:satunnaisprosessi (mukaan lukien normaaliprosessi ja kiinteä prosessi, pisteprosessi jne.), e:Markovprosessi,f:satunnaisanalyysi,g:martingaleteoria,h:sovellettu todennäköisyysteoria (erityisesti sovellettu tieteenaloihin).
18.MathematicalStatistics
a:näytteenottoteoria(mukaan lukien otosjakauma,otostutkimus jne.),b:hypoteesitesti,c:ei-parametriset tilastot,d:varianssianalyysi,e:korrelaatioregressioanalyysi,f:tilastollinen päätelmä,g:Bayesin tilastot (mukaan lukien kokeellinen arvio), monimuuttujaanalyysi,j:tilastotTuomioteoria,k:aikasarjaanalyysi,l:muut matemaattisten tilastojen aiheet.
19.Soveltava tilastomatematiikka
a:tilastollisenlaadunvalvonta,b:luotettavuusmatematiikka,c:vakuutusmatematiikka,d:tilastosimulaatio.
20.AppliedstatisticalmathematicsOtherdisciplines
21.Toimintatutkimus
a:lineaarinen ohjelmointi,b:epälineaarinen ohjelmointi,c:dynaaminen ohjelmointi,d:kombinatorinen optimointi,e:parametriohjelmointi,f:kokonaislukuohjelmointi,g:stokastinen ohjelmointi,h:jonoteoria,i:peliteoria (kutsutaan myös peliteoriaksi),j:inventorytheory,k:päätösteoria,l:searchtheory ,m:graafiteoria,n:yleinen suunnitteluteoria,o:optimointi,p:muut toimintatutkimuksen tieteenalat.
22. Kombinatoriikka
23.FuzzyMathematics
24. Kvanttimatematiikka
25.Appliedmathematics(specificapplicationintorelatedsubjects)
26.Matematiikka ja muut oppiaineet
Kehityshistoria
Mathematics(Chinesepinyin:shùxué;Greek:μαθηματικ;English:mathematicsormaths),itsEnglishisderivedfromtheancientGreekμθημα(máthēma),withlearning,Knowledge,andscience.AncientGreekscholarsregardeditasthestartingpointofphilosophy,the"foundationoflearning."Inaddition,thereisamorenarrowandtechnicalmeaning-"mathematicsresearch".Evenwithinitsetymology,themeaningofitsadjectives,whichisrelatedtolearning,isalsousedforindexlearning.
ThepluralforminEnglish,andthepluralforminFrenchwith-es,formmathématiques,whichcanbetracedbacktotheneutralpluralinLatin(mathematica),translatedbyCicerofromthepluralinGreekταμαθηματικά(tamathēmatiká).
MuinainenKiina matematiikkaa kutsuttiin aritmetiikkaksi, jota kutsuttiin myös aritmetiikkaksi ja lopulta muutettiin matematiikaksi. Muinaisen Kiinan aritmetiikka on yksi kuudesta taiteesta (kutsuttiin "numeroksi" kuuden taiteen sisällä).
Mathematicsoriginatedfromtheearlyproductionactivitiesofmankind.TheBabylonianshaveaccumulatedcertainmathematicalknowledgesinceancienttimesandcanapplypracticalproblems.Fromtheperspectiveofmathematics,theirmathematicalknowledgeisonlyobtainedfromobservationandexperience,withoutcomprehensiveconclusionsandproofs,buttheymustfullyaffirmtheircontributionstomathematics.
Theknowledgeandapplicationofbasicmathematicsisanindispensablepartofthelifeofindividualsandgroups.TherefinementofitsbasicconceptscanbekatsoninancientmathematicstextsinancientEgypt,MesopotamiaandancientIndia.Sincethen,itsdevelopmenthascontinuedtomakesmallprogress.Butthealgebraandgeometryatthattimehaveremainedindependentforalongtime.
Algebraisarguablythemostwidelyaccepted"mathematics".Itcanbesaidthatthefirstmathematicsthateveryonecomesintocontactwithisalgebrasincetheylearntocountwhentheyareyoung.Andmathematicsisasubjectthatstudies"number",andalgebraisalsooneofthemostimportantcomponentsofmathematics.Geometryisthebranchofmathematicsthatwasfirststudiedbypeople.
UntiltheRenaissanceinthe16thcentury,DescartesfoundedAnalyticGeometry,linkingthealgebraandgeometrythatwerecompletelyseparateatthattime.Sincethen,wecanfinallyusecalculationstoprovegeometrictheorems;atthesametime,wecanalsousegraphicstovisuallyrepresentabstractalgebraicequationsandtrigonometricfunctions.Later,moresubtlecalculuswasdeveloped.
Currently,mathematicsincludesmultiplebranches.TheBourbakiSchoolofFrance,foundedinthe1930s,believesthatmathematics,atleastpuremathematics,isthetheoryofstudyingabstractstructures.Rakenneisadeductivesystembasedoninitialconceptsandaxioms.Theybelievethatmathematicshasthreebasicparentstructures:algebraicstructure(group,ring,field,lattice,...),orderstructure(partialorder,totalorder,...),topologicalstructure(neighborhood,limit, liitettävyys, mitat,……).
Mathematicsisusedinmanydifferentfields,includingscience,engineering,medicineandeconomics.Theapplicationofmathematicsinthesefieldsisgenerallyreferredtoasappliedmathematics,andsometimesitwillalsostimulatenewmathematicaldiscoveriesandpromotethedevelopmentofnewmathematicsdisciplines.Matemaatikkosalsostudypuremathematics,thatis,mathematicsitself,withoutanypracticalapplicationasthegoal.Althoughthereisalotofworkstartingwiththestudyofpuremathematics,youmayfindsuitableapplicationslater.
Specifically,therearesub-fieldsusedtoexplorethelinksbetweenthecoreofmathematicsandotherfields:fromlogic,settheory(mathematicsfoundation),tomathematicsbasedondifferentscientificexperiences(appliedmathematics),Withmorerecentresearchonuncertainty(chaos,fuzzymathematics).
Intermsofverticality,theexplorationintherespectivefieldsofmathematicshasbecomemoreandmorein-depth.
Määritelmä
Aristotledefinedmathematicsas"quantitativemathematics",andthisdefinitionwasuntilthe18thcentury.Sincethe19thcentury,mathematicalresearchhasbecomemoreandmorerigorous,beginningtoinvolveabstracttopicssuchasgrouptheoryandprojectiongeometrythathavenoclearrelationshipwithquantityandmeasurement.Matemaatikkosandphilosophershavebeguntoproposevariousnewdefinitions.Someofthesedefinitionsemphasizethedeductivenatureofalotofmathematics,someemphasizeitsabstractness,andsomeemphasizecertaintopicsinmathematics.Evenamongprofessionals,thereisnoconsensusonthedefinitionofmathematics.Thereisevennoconsensusonwhethermathematicsisartorscience.[8]Manyprofessionalmathematiciansarenotinterestedinthedefinitionofmathematics,orthinkitisundefinable.Somejustsay,"Mathematicsisdonebymathematicians."
Thethreemaintypesdefinedbymathematicsarecalledlogicians,intuitionists,andformalists,eachofwhichreflectsadifferentphilosophySchoolofThought.Thereareseriousproblems,noonegenerallyacceptsit,andnoreconciliationkatsomsfeasible.
TheearlydefinitionofmathematicallogicwasBenjaminPeirce's"SciencethatDrawsNecessaryConclusions"(1870).InPrincipiaMathematica,BertrandRussellandAlfredNorthWhiteheadproposedaphilosophicalprogramcalledlogicismandtriedtoprovethatallmathematicalconcepts,statements,andprinciplescanbedefinedandprovedbysymboliclogic.ThelogicaldefinitionofmathematicsisRussell's"Allmathematicsissymboliclogic"(1903).
Thedefinitionofintuitionism,fromthemathematicianL.E.J.Brouwer,toidentifymathematicswithcertainspiritualphenomena.Anexampleoftheintuitionisticdefinitionis"mathematicsismentalactivityconstructedoneaftertheother."Thecharacteristicofintuitionismisthatitrejectssomemathematicalideasthatareconsideredvalidaccordingtootherdefinitions.Inparticular,althoughothermathematicalphilosophiesallowobjectsthatcanbeproventoexist,eveniftheycannotbeconstructed,intuitionismonlyallowsmathematicalobjectsthatcanbeactuallyconstructed.
Formalismdefinesmathematicswithitssymbolsandoperatingrules.HaskellCurrysimplydefinesmathematicsas"thescienceofformalsystems."[33]Theformalsystemisasetofsymbols,ortokens,andtherearerulesthattellhowtokensarecombinedintoformulas.Intheformalsystem,thewordaxiomhasaspecialmeaning,whichisdifferentfromtheordinarymeaningof"self-evidenttruth".Inaformalsystem,anaxiomisacombinationoftokenscontainedinagivenformalsystem,withouttheneedtousetherulesofthesystemtoderive.
Rakenne
Manymathematicalobjectssuchasnumbers,functions,andgeometryreflecttheinternalstructureofcontinuousoperationsorrelationsdefinedinthem.Mathematicsstudiesthepropertiesofthesestructures.Forexample,numbertheorystudieshowintegersarerepresentedinarithmeticoperations.Inaddition,thingswithsimilarpropertiesindifferentstructuresoftenhappen.Thismakesitpossibletodescribetheirstatethroughfurtherabstractionandthenuseaxiomsforatypeofstructure.Whatneedstobestudiedistofindoutwhatsatisfiestheseinallstructures.Thestructureofaxioms.Therefore,wecanlearnaboutgroups,rings,domains,andotherabstractsystems.Thesestudies(throughstructuresdefinedbyalgebraicoperations)canformthefieldofabstractalgebra.Becauseabstractalgebrahasgreatversatility,itcanoftenbeappliedtosomekatsominglyirrelevantproblems.Forexample,someancientrulerdrawingproblemsarefinallysolvedusingGaloistheory,whichinvolvesdomaintheoryandgroups.s.Anotherexampleofalgebratheoryislinearalgebra,whichmakesageneralstudyofvectorspacesinwhichtheelementshavequantityanddirectionality.Thesephenomenashowthatgeometryandalgebra,whichwereoriginallyconsideredtobeunrelated,areactuallystronglycorrelated.Combinatorialmathematicsstudiesenumeratethemethodsthatsatisfythenumericalobjectsofagivenstructure.
Avaruus
ThestudyofspacecomesfromEuropeangeometry.Trigonometrycombinesspaceandnumber,andincludesthefamousPythagoreantheorem,trigonometricfunctions,etc.Today'sresearchonspacehasbeenextendedtohigher-dimensionalgeometry,non-Euclideangeometryandtopology.Numberandspaceplayimportantrolesinanalyticgeometry,differentialgeometryandalgebraicgeometry.Indifferentialgeometry,thereareconceptssuchasfiberbundlesandcalculationsonmanifolds.Inalgebraicgeometry,therearedescriptionsofgeometricobjectssuchasthesolutionsetofpolynomialequations,combiningtheconceptsofnumberandspace;thereisalsothestudyoftopologicalgroups,combiningstructureandspace.LiQunisusedtostudyspace,structureandchange.
Perusasiat
Vallankumouksen pinta (10 arkkia)
Pääartikkeli: Matemaattiset perusteet
TomakeitclearThefieldsofmathematicalfoundations,mathematicallogicandsettheoryweredeveloped.TheGermanmathematicianKantor(1845~1918)pioneeredsettheoryandboldlymarchedtowards"infinity",inordertoprovideasolidfoundationforallbranchesofmathematics,anditscontentisalsoquiterich.Thoughthasmadeaninestimablecontributiontothefuturedevelopmentofmathematics.
Settheoryhasgraduallypenetratedintovariousbranchesofmathematicsintheearly20thcenturyandhasbecomeanindispensabletoolinanalysistheory,measurementtheory,topologyandmathematicalsciences.Atthebeginningofthe20thcentury,themathematicianHilbertspreadCantor'sideasinGermany,callingsettheorythe"mathematician'sparadise"and"themostamazingproductofmathematicalthought."TheBritishphilosopherRussellpraisedCantor'sworkas"thegreatestworkthatthiseracanboast."
Logiikka
Mainarticle:Mathematicallogic
MathematicallogicfocusesonputtingmathematicsinoneOnasolidaxiomaticframework,andstudytheresultsofthisframework.Foritspart,itistheoriginofGödel'ssecondincompletenesstheorem,andthisisperhapsthemostwidelyspreadresultinlogic.Modernlogicisdividedintorecursiontheory,modeltheory,andprooftheory,anditiscloselyrelatedtotheoreticalcomputerscience.
Symbolit
Mainarticle:Mathematicssymbols
MaybetheancientChinesecalculatoristheworld’sOneoftheearliestusedsymbolsoriginatedfromdivinationintheShangDynasty.
Mostofthemathematicalsymbolsweusetodaywerenotinventeduntilthe16thcentury.Priortothis,mathematicswaswritteninwords,whichwasanassiduousprogramthatwouldlimitthedevelopmentofmathematics.Today'ssymbolsmakemathematicseasierforpeopletooperate,butbeginnersoftenfeeltimidaboutthis.Itisextremelycompressed:afewsymbolscontainalotofinformation.Likemusicalnotation,today'smathematicalnotationhasacleargrammarandinformationcodesthataredifficulttowriteinotherways.
Tiukkaus
Mathematicslanguageisalsodifficultforbeginners.Howtomakethesewordshavemoreprecisemeaningsthandailyexpressionsalsotroublesbeginners.Wordssuchasopenanddomainhavespecialmeaningsinmathematics.Mathematicaltermsalsoincludepropernounssuchasembryoandintegrability.Butthereisareasonforusingthesespecialsymbolsandproprietaryterms:mathematicsrequiresmoreprecisionthaneverydaylanguage.Matemaatikkoscallthisrequirementfortheaccuracyoflanguageandlogic"rigorous."
Mathematicsisauniversalmethodforhumanstostrictlydescribetheabstractstructureandpatternsofthings,anditcanbeappliedtoanyproblemintherealworld.Inthissense,mathematicsisaformalscience,notanaturalscience.Allmathematicalobjectsareessentiallyartificiallydefined.Theydonotexistinnature,butonlyinhumanthinkingandconcepts.Therefore,thecorrectnessofmathematicalpropositionscannotbeverifiedbyrepeatableexperiments,observations,ormeasurementslikenaturalsciences,suchasphysicsandchemistry,whosegoalistostudynaturalphenomena.Instead,theycanbedirectlyprovedbyrigorouslogicalreasoning.Oncetheconclusionisprovedthroughlogicalreasoning,thentheconclusioniscorrect.
Theaxiomatizationmethodofmathematicsisessentiallythedirectapplicationoflogicmethodsinmathematics.Intheaxiomsystem,allpropositionsareconnectedbyrigorouslogic.Startingfromtheoriginalconceptthatisdirectlyadoptedwithoutdefinition,otherderivedconceptsaregraduallyestablishedthroughthemeansoflogicaldefinition;startingfromtheaxiomthatisdirectlyadoptedasthepremisewithoutproof,andthelogicaldeductionmethodisusedtograduallyobtainfurtherTheconclusionisthetheorem;thenalltheconceptsandtheoremsarecombinedintoawholewithinternallogicalconnection,whichconstitutestheaxiomsystem.
Strictnessisaveryimportantandbasicpartofmathematicalproof.Matemaatikkoshopethattheirtheoremscanbededucedbasedonaxiomswithsystematicreasoning.Thisistoavoidrelyingonunreliableintuitionstoarriveatwrong"theorems"or"proofs,"andthissituationhaskatsonmanyexamplesinhistory.Thedegreeofrigorexpectedinmathematicsvarieswithtime:theGreeksexpectedcarefularguments,butinNewton’stimethemethodsusedwerelessrigorous.Newton'sdefinitiontosolvetheproblemwasnotproperlyhandleduntilthe19thcenturybymathematicianswithrigorousanalysisandformalproof.Matemaatikkoscontinuetoargueabouttherigorofcomputer-aidedproofs.Whenalargenumberofcalculationsaredifficulttoverify,theproofcanhardlybesaidtobeeffectiveandrigorous.
Määrä
Thestudyofquantitystartswithnumbers,startingwithfamiliarnaturalnumbersandintegersandrationalandirrationalnumbersdescribedinarithmetic.
Tobespecific:Duetotheneedofcounting,humansabstractnaturalnumbersfromrealthings,whicharethestartingpointofall"numbers"inmathematics.Naturalnumbersarenotclosedtosubtraction.Inordertoclosetosubtraction,weexpandthenumbersystemtointegers;tonotclosetodivision,andtoclosetodivision,weexpandthenumbersystemtorationalnumbers;forsquarerootoperations,weexpandthenumbersystemtorationalnumbers.Thesystemisextendedtoalgebraicnumbers(infact,algebraicnumbersareabroaderconcept).Ontheotherhand,thelimitoperationisnotclosed,andweextendthenumbersystemtorealnumbers.Finally,inordertopreventnegativenumbersfrombeingunabletoraikatsovenpowersintherealnumberrange,weextendthenumbersystemtocomplexnumbers.Complexnumbersarethesmallestalgebraiccloseddomainscontainingrealnumbers.Weperformfourarithmeticoperationsonanycomplexnumber,andthesimplificationresultsareallcomplexnumbers.
Anotherconceptrelatedto"quantity"isthe"potential"ofinfinitesets,whichleadstothecardinalnumberandanotherconceptofinfinityafterwards:theAlephnumber,whichallowstheinfinitesetbetweenThesizecanbemeaningfullycompared.
Lyhyt historia
Lyhyt historiaofWesternMathematics
Theevolutionofmathematicscanberegardedasthecontinuousdevelopmentofabstraction,ortheextensionofthesubjectmatter,whiletheEastandWestCulturehasalsoadoptedadifferentperspective.Europeancivilizationhasdevelopedgeometry,whileChinahasdevelopedarithmetic.Thefirstabstractedconceptisprobablythenumber(Chinesecomputingchip).Therecognitionofsomethingsimilarbetweentwoapplesandtwoorangesisabreakthroughinhumanthinking.Inadditiontoknowinghowtocountthenumberofactualobjects,prehistorichumansalsoknowhowtocountthenumberofabstractconcepts,suchastime—days,seasons,andyears.Arithmetic(addition,subtraction,multiplication,anddivision)alsoarisesnaturally.
Furthermore,youneedwritingorothersystemsthatcanrecordnumbers,suchasFumuortheChipusedbytheIncas.Therehavebeenmanydifferentcountingsystemsinhistory.
Inancienttimes,themainprincipleinmathematicswastostudyastronomy,thereasonabledistributionoflandandfoodcrops,taxationandtraderelatedcalculations.Mathematicsisformedtounderstandtherelationshipbetweennumbers,tomeasuretheland,andtopredictastronomicalevents.Theseneedscanbesimplysummarizedasmathematicalresearchonquantity,structure,spaceandtime.
WesternEuropewentthroughtheRenaissanceerafromancientGreecetothe16thcentury.Elementaryalgebraandtrigonometryaregenerallycomplete,buttheconceptoflimithasnotyetappeared.
TheemergenceoftheconceptofvariablesinEuropeinthe17thcenturymadepeoplebegintostudytheinterrelationshipsbetweenchangingquantitiesandthemutualtransformationsbetweenfigures.Duringtheestablishmentofclassicalmechanics,themethodofcalculuscombinedwithgeometricprecisionwasinvented.Withthefurtherdevelopmentofnaturalscienceandtechnology,thefieldsofsettheoryandmathematicallogic,whichareproducedtostudythefoundationofmathematics,havealsobeguntodevelopslowly.
ABriefKiinan matematiikan historia
Pääartikkeli:Kiinan matematiikan historia
Theancientnameofmathematicsisarithmetic.ItisanimportantsubjectinancientChinesescience.AccordingtoancientChinesemathematicsThecharacteristicsofdevelopmentcanbedividedintofiveperiods:budding;formationofthesystem;development;prosperityandtheintegrationofChineseandWesternmathematics.
Liittyvät
ManyoftheresearchresultsofancientChinesearithmetichavealreadyconceivedideasandmethodsthatwereonlyinvolvedinWesternmathematics.Inmoderntimes,therearealsomanyworld-leadingmathematicsresearchresultsbasedonChineseNamedbythemathematician:
[LiShanlan'sIdenticalEquation]TheresearchresultsofthemathematicianLiShanlanonthesumofseries,Itisnamed"LiShanlan'sidentity"(orLi'sidentity)intheworld.
[FahrenheitTheorem]MatemaatikkoHuaLuogeng’sresearchresultsoncompletetrigonometricsumsarecalled"FahrenheitTheorem”;inaddition,themethodheproposedwithmathematicianWangYuanfortheapproximatecalculationofmultipleintegralsisknowninternationallyasthe“Hua-WangMethod”.
[Su’sCone]MatemaatikkoSuBuqing’sresearchachievementsinaffinedifferentialgeometryareinternationallyItwasnamed"Su'sCone".
[Xiong'sinfiniteorder]MatemaatikkoXiongQinglai'sresearchresultsonwholefunctionsandmeromorphicfunctionsofinfiniteorderItishailedas"Xiong'sInfiniteClass"bytheinternationalmathematicscircle.
[Representatives]TheresearchresultsofthemathematicianChenXingshenonindicativecategoriesareinternationallyknownas"Presentationalcategory".
[Zhou'sCoordinates】MatemaatikkoZhouWeiliang’sresearchinalgebraicgeometryTheresultiscalled"Zhou'sCoordinates"bytheinternationalmathematicscircle;therearealso"Zhou'sTheorem"and"Zhou'sRing"namedafterhim.
[WuThemethod]ThemethodofthemathematicianWuWenjunonthemechanicalproofofgeometrictheoremsisinternationallyknownasthe"Wu'smethod";thereisalsothe"Wu'sformula"namedafterhim.p>
[Wang’sParadox】MatemaatikkoWangHao’spropositiononmathematicallogicwasInternationallydefinedas"Wang’sParadox."
[Korot'sTheorem】MatemaatikkoKeZhao'squestionaboutCarterTheresearchresultsofLan’sproblemarecalled"Kot'stheorem"bytheinternationalmathematicscommunity;inaddition,theresearchresultsofhisandmathematicianSunQiinnumbertheoryarecalled"Ke-SunConjecture"intheworld.
[Chen’sTheorem]ThepropositionputforwardbymathematicianChenJingruninthestudyofGoldbach’sconjectureishailedas"Chen’sTheorem"bytheinternationalmathematicscommunity.
[Yang-ZhangTheorem]TheresearchresultsofmathematiciansYangLeandZhangGuanghouinfunctiontheoryarecalled"Yang-ZhangTheorem"internationally.".
[Lu’sConjecture]MatemaatikkoLuQikeng’sresearchresultsonmanifoldswithconstantcurvatureareknowninternationally"Lu’sConjecture".
[Xia’sInequality]MatemaatikkoXiaDaoxing’sresearchresultsonfunctionalintegralsandinvariantmeasuretheoryarecalled"Xia’sinequality".
[Jiang’sspace]MatemaatikkoJiangBoju’sresearchresultsonthecalculationofNielsennumbershavebeenrecognizedinternationally.Theaboveisnamed"Jiang'sAvaruus";thereisalso"Jiang'sSubgroup"namedafterhim.
[Hou'sTheorem】MatemaatikkoHouZhenting’sresearchresultsonMarkovprocesseshavebeennamed"Hou'sTheorem"internationally.
[Zhou'sguessb>]MatemaatikkoZhouHaizhong’sresearchresultsonthedistributionofMersenneprimenumbersareinternationallynamed"Zhou’sConjecture".
[Wang’sTheorem]MatemaatikkoWangXutang’sresearchresultsonpointsettopologyarehailedas"Wang’sTheorem"bytheinternationalmathematicscommunity.
[Yuan"Yuan'sLemma"]MatemaatikkoYuanYaxiang’sresearchresultsinnonlinearprogramminghavebeennamed"Yuan'sLemma"internationally.
【Jing’soperator】MatemaatikkoJingNaihuan’sresearchachievementsinsymmetricfunctionsGuoisnamed"Jing'sOperator"internationally.
[Chen’sGrammar]TheresearchresultsofmathematicianChenYongchuanincombinatoricswerenamed"Chen'sGrammar".
Matemaattiset lainaukset
Ulkomaiset esineet
Kaikki laskettiin. -- Pythagoras
Geometryhasnoking'sway.——Euklidinen
MathematicsisthewordsusedbyGodtowritetheuniverse.——Galileo
Iamdeterminedtogiveupthatmereabstractgeometry.Thatistosay,nolongerconsiderquestionsthatareonlyusedtopracticethinking.Ididthistostudyanotherkindofgeometry,thatis,geometrythataimstoexplainnaturalphenomena.——Descartes(ReneDescartes,1596~1650)
Matemaatikkosarealltryingtodiscoversomeorderoftheprimenumbersequenceonthisday.Wehavereasontobelievethatthisisamystery,andthehumanmindcanneverinfiltrate.——Euler
Somebeautifultheoremsinmathematicshavesuchcharacteristics:Theyareeasytogeneralizefromfacts,buttheproofsareextremelyhidden.Mathematicsisthekingofscience.——Gauss
Tämä on hyvin jäsennellyn kielen etu, ja sen yksinkertaistetut huomautukset pehmentävät esoteeristen teorioiden lähdettä.—Laplace (PierreSimonLaplace, 1749~1827)
Itwouldbeaseriousmistaketothinkthatthereisnecessityonlyingeometricproofsorsensoryevidence.——AugustinLouisCauchy(1789~1857)
Matematiikan ydin on vapaudessa. — Cantor (GeorgFerdin ja LudwigPhilippCantor, 1845–1918)
Musiccaninspireorsoothefeelings,paintingcanmakepeoplepleasingtotheeye,poetrycanmovetheheartstrings,philosophycangivepeoplewisdom,andsciencecanimprovemateriallife,Butmathematicscangivealloftheabove.——Klein(ChristianFelixKlein,1849-1925)
Aslongasabranchofsciencecanaskalotofquestions,itisfullofvitality,andthelackofproblemsheraldstheendordeclineofindependentdevelopment.——Hilbert(DavidHilbert,1862~1943)
Matematiikan sydämen ongelma.——PaulHalmos (PaulHalmos,1916~2006)
Aika on vakio, mutta ahkeralle, on "muuttuva". Ihmistalon "minuutteilla"aikalaskennassa on 59 kertaa enemmän aikaa kuin omalla talolla "tunteja"ajan laskemikatson.——Rybakov
Kiinalaiset merkit
Thingsareanalogous,eachhasitsownmerits,soalthoughthebranchesaredivided,theysharethesameknowledge,butonlyoneend.Thereasonisanalyzedwithwords,andpicturesareusedfordisintegration.Theconcubinealsomakesappointmentsandcanbecircumscribed.——LiuHui
Sairauden viivästymisen nopeus on epäkeskinen, käsin kosketeltava ja havaittavissa, ja siinä on useita paineita.——ZuChongzhi(429~500)
Newmathematicalmethodsandconceptsareoftenmoreimportantthansolvingmathematicalproblemsthemselves.——HuaLuogeng
Themathematicalexpressionisaccurateandconcise,thelogicisabstractanduniversal,andtheformisflexibleandchangeable.Itisanidealtoolforcosmiccommunication.——ZhouHaizhong
Scienceneedsexperimentation.Buttheexperimentcannotbeabsolutelyaccurate.Ifthereisamathematicaltheory,itisentirelycorrectbyrelyingoninference.Thereasonwhysciencecannotleavemathematics.
Manybasicscientificconceptsoftenneedmathematicalconceptstoexpress.Somathematicianshavefoodtoeat,butitisnaturalthattheycannotwintheNobelPrize.ThereisnoNobelPrizeinmathematics,whichmaybeagoodthing.TheNobelPrizeistoocompellingandpreventsmathematiciansfromfocusingontheirownresearch.——ChenXingshen
Aftermodernhigh-energyphysicsarrivedatquantumphysics,thereweremanyexperimentsthatcouldn’tbedoneatall.Usingpenandpapertocalculateathome,thisisnotfarfromwhatmathematiciansthought,somathematicsisinphysics.Hasincrediblepower.——QiuChengtong
Payattentiontotheorderofreadingandwritinghomework.Wemustdevelopgoodlearningmethods,trytoreviewtheknowledgelearnedthatdaywhenwegohome,especiallythenoteswetake,andthenwritehomework,sothattheeffectwillbebetter.
Välimerkit
Mathematicsisaninternationalsubjectthatrequiresrigorousnessinallaspects.
Mathematicsofelementarylevelandaboveinmycountrycanberegardedasscientificandtechnologicalliterature.
mycountrystipulatesthatthefullstopofbibliographicarticlesmustuse".".Mathematicsisusedforthispurpose,secondlytoavoidconfusionwithsubscripts,andthirdlybecausemycountryhassubmittedinternationalresearchreportsonmathematics,Buttheydonotuseit,becausemostforeignperiodsarenot".".
Intheproofquestion,""shouldbeusedafter∵(koska),and"."shouldbeusedafter∴(niin).Jos suuressa kysymyksessä on useita pieniä kysymyksiä, jokainen kysymys päättyyConnect";",käytä"."lopettaaksesi viimeisen kysymyksenloppunumeron,ja käyttää";"kysyntää"
Kurinalaisuus
Universitieswithfirst-levelmathematicsdisciplinesofnationalkeydisciplines:
Pekingin yliopisto |
PekingUnionMedicalCollege-Tsinghuan yliopistoSchoolofMedicine |
Tsinghuan yliopisto |
Pekingin Normaaliyliopisto p> |
Nankain yliopisto |
Jilinin yliopisto |
Fudanin yliopisto |
Nanjingin yliopisto |
ZhejiangUniversity |
Kiinan tiede- ja teknologiayliopisto |
Shandongin yliopisto |
SichuanUniversity |
(Note:1Thesecond-leveldisciplinescoveredbythenationalkeydisciplinesareallnationalkeydisciplines.)
Universitieswiththesecond-levelnationalkeydisciplinesofmathematics(notincludingtheabovelist)
b>:
Perusmatematiikka | SunYat-Senin yliopisto |
CapitalNormal University | |
Xiamenin yliopisto | |
Itä-Kiinan normaaliyliopisto | |
Wuhanin yliopisto | |
Laskennallinen matematiikka | Xiangtanin yliopisto |
DalianLi teknologiayliopisto | |
Xi’anJiaotongUniversity | |
Todennäköisyysteoria ja matemaattinen tilasto | Central South University |
Soveltava matematiikka | XinjiangUniversity |
Operatiivinen tutkimus ja kybernetiikka | (ei mitään) |
Kaava
Kaava on tärkeä osa matematiikkaa.Esimerkki...
katso
PureMathematics,Soveltava matematiikka
Elementary Mathematics, Advanced Mathematics
Moderni matematiikka, moderni matematiikka
Matemaattiset menetelmät
Matemaattiset ongelmat
Matemaatikko
Matematiikan lainaukset
Matematiikan historia
Kiinan matematiikan historia
MatematiikkaKulttuuri
Matemaattiset kaavat
Matematiikan termit
Jatkuva
Kahdeksan ongelmaa
Thefirstsevenproblemsarerecognizedasthesevenproblems,andtheeighthproblemisoneoftheworld’sthreemajorconjectures.
1.P(polynomialgoritmi)ongelmavs.NP(ei-polynomialgoritmi)ongelma
OnaSaturdaynight,youparticipatedinagrandParty.Feelingembarrassed,youwanttoknowiftherearepeopleyoualreadyknowinthishall.YourhostsuggestedtoyouthatyoumustknowtheladyRosewhoisnearthecornerofthedessertplate.Withinasecond,youcanscanthereandfindthatyourmasteriscorrect.However,ifthereisnosuchhint,youhavetolookaroundtheentirehallandexamineeveryoneonebyonetokatsoifthereisanyoneyouknow.Generatingasolutiontoaproblemusuallytakesmuchmoretimethanverifyingagivensolution.Thisisanexampleofthisgeneralphenomenon.
Similarly,ifsomeonetellsyouthatthenumber13,717,421canbewrittenastheproductoftwosmallernumbers,youmaynotknowwhetheryoushouldtrusthim,butifhetellsyouItcanbefactoredinto3607times3803,soyoucaneasilyverifythatthisiscorrectwithapocketcalculator.Regardlessofwhetherwewriteprogramsdexterously,determiningwhetherananswercanbequicklyverifiedusinginternalknowledge,orwhetherittakesalotoftimetosolvewithoutsuchhintsisregardedasoneofthemostprominentproblemsinlogicandcomputerscience.ItwasstatedbyStephenCookin1971.
Toiseksi, Hodge-arvelu
Matemaatikkosofthe20thcenturydiscoveredapowerfulwaytostudytheshapeofcomplexobjects.Thebasicideaistoaskhowfarwecanformtheshapeofagivenobjectbygluingtogethersimplegeometricbuildingblockswithincreasingdimensions.Thistechniquehasbecomesousefulthatitcanbepromotedinmanydifferentways;iteventuallyleadstosomepowerfultoolsthatenablemathematicianstoachievegreatresultsinclassifyingthevariousobjectsencounteredintheirresearch.progress.Unfortunately,inthispromotion,thegeometricstartingpointoftheprogrambecomesblurred.Inacertainsense,certainpartswithoutanygeometricexplanationmustbeadded.Hodge'sconjectureassertsthatforaparticularlyperfecttypeofspacesuchastheso-calledprojectivealgebraicvariety,thecomponentscalledHodgeclosedchainsareactually(rationallinear)combinationsofgeometriccomponentscalledalgebraicclosedchains.
3. Poincaren olettamus (on todistettu)
Ifwestretcharubberbandaroundthesurfaceofanapple,thenwecanbothDon'ttearitoff,don'tletitleavethesurface,makeitmoveslowlyandshrinktoapoint.Ontheotherhand,ifweimaginethatthesamerubberbandisstretchedonatiresurfaceintheproperdirection,thereisnowaytoshrinkittoapointwithoutbreakingtherubberbandorthetiresurface.WesaythatthesurfaceoftheAppleis"singlyconnected",butthetiresurfaceisnot.Aboutahundredyearsago,Poincaréalreadyknewthatatwo-dimensionalspherecanessentiallybedescribedbysimpleconnectivity.Heproposedthecorrespondenceproblemofathree-dimensionalsphere(afour-dimensionalspace)thathasaunitdistancefromtheorigin.Thisproblemimmediatelybecameextremelydifficult,andsincethen,mathematicianshavebeenstrugglingwithit.
Neljä.Riemannnin hypoteesi
Somenumbershavespecialpropertiesthatcannotbeexpressedastheproductoftwosmallernumbers,forexample:2,3,5,7andsoon.Suchnumbersarecalledprimenumbers;theyplayanimportantroleinpuremathematicsanditsapplications.Inallnaturalnumbers,thedistributionofthisprimenumberdoesnotfollowanyregularpattern;however,theGermanmathematicianRiemann(1826~1866)observedthatthefrequencyofprimenumbersiscloselyrelatedtoacarefullyconstructedso-calledRiemannZetafunctionThebehaviorofz(s).ThefamousRiemannhypothesisassertsthatallmeaningfulsolutionstotheequationz(s)=0areonastraightline.Thishasbeenverifiedforthefirst1,500,000,000solutions.Provingthatitistrueforeverymeaningfulsolutionwillbringlighttomanymysteriessurroundingthedistributionofprimenumbers.
5.Yang-Millsexistenceand masssgap
Thewayoftheworldisestablishedfortheworldofelementaryparticles.Abouthalfacenturyago,YangZhenningandMillsdiscoveredthatquantumphysicsrevealedastrikingrelationshipbetweenelementaryparticlephysicsandthemathematicsofgeometricobjects.ThepredictionbasedontheYoung-Millsequationhasbeenconfirmedinthefollowinghigh-energyexperimentsperformedinlaboratoriesaroundtheworld:Brockhaven,Stanford,EuropeanInstituteofParticlePhysics,andTsukuba.Nevertheless,theirequationsthatdescribeheavyparticlesandaremathematicallyrigoroushavenoknownsolutions.Inparticular,the"massgap"hypothesis,whichisconfirmedbymostphysicistsandappliedintheirexplanationoftheinvisibilityof"quarks",hasneverreceivedamathematicallysatisfactoryconfirmation.Progressonthisissuerequirestheintroductionoffundamentallynewconceptsinbothphysicsandmathematics.
6.TheexistenceandsmoothnessoftheNavier-Stokesequation
TheundulatingwavesfollowusTheboatiswindingthroughthelake,andtheturbulentaircurrentfollowstheflightofourmodernjetplane.MatemaatikkosandphysicistsareconvincedthatbothbreezeandturbulencecanbeexplainedandpredictedbyunderstandingthesolutionoftheNavier-Stokesequation.Althoughthekatsoquationswerewritteninthe19thcentury,westillhaveverylittleunderstandingofthem.ThechallengeistomakesubstantialprogressinmathematicaltheorysothatwecansolvethemysteryhiddenintheNavier-Stokesequation.
Seitsemän.BirchandSwinnerton-Dyer-arvelu
Matemaatikkosarealwaysreferredtoasx^2+y^2=z^2andthecharacterizationofallintegersolutionsofalgebraicequationsisfascinating.Euclidoncegaveacompletesolutiontothisequation,butformorecomplexequations,thisbecomesextremelydifficult.Infact,asYu.V.Matiyasevichpointedout,Hilbert’stenthproblemisunsolvable,thatis,thereisnogeneralmethodtodeterminewhethersuchamethodhasanintegersolution.WhenthesolutionisapointofanAbeliancluster,BechandSwinnerton-DellconjecturethatthesizeofthegroupofrationalpointsisrelatedtothebehaviorofaZetafunctionz(s)nearthepoints=1.Inparticular,thisinterestingconjectureholdsthatifz(1)isequalto0,thenthereareaninfinitenumberofrationalpoints(solutions);onthecontrary,ifz(1)isnotequalto0,thenthereareonlyafinitenumberofsuchpoints.
Kahdeksan. Goldbachin arvelu
InalettertoEuleronJune7,1742,Goldbachproposedthefollowingconjecture:a)Anyevennumbernotlessthan6canbeexpressedasthesumoftwooddprimenumbers;b)Anyoddnumbernotlessthan9canbeexpressedasthesumofthreeoddprimenumbers.Euleralsoproposedanotherequivalentversioninhisreply,thatis,anyevennumbergreaterthan2canbewrittenasthesumoftwoprimenumbers.UsuallythesetwopropositionsarecollectivelyreferredtoasGoldbach'sconjecture.Theproposition"Anybigevennumbercanbeexpressedasthesumofanumberwithnomorethanaprimefactorandanothernumberwithnomorethanbprimefactors"isrecordedas"a+b",theCorinthiansconjectureistoprove"1+1"isestablished.
Vuonna 1966 ChenJingrun osoitti "1+2":n perustamisen, toisin sanoen "Jokainen iso pariluku voidaan ilmaistaalkuluvun ja toisen päätekijän summana, joka ei ylitä2".
ThecontentofBaiduEncyclopediaisco-editedbynetizens.Ifyoufindthatthecontentofyourentryisinaccurateorimperfect,pleaseusemyentryeditingservice(free)toparticipateinthecorrection.Gonow>>