matematiikka

Matematiikan ala

1.Matematiikan historia

2.Matematiikan logiikka ja matematiikan perusteet

a:deduktiivinen logiikka (kutsutaan myös symbolilogiikaksi),b:todistusteoria (kutsutaan myös metamatematiikaksi),c:rekursioteoria,d:malliteoria,e:aksiomien joukkoteoria,f:matemaattinen perusta,g:matemaattinen logiikka ja muut matematiikan perusteet.

3. Lukuteoria

a:alkeislukuteoria,b:analyyttinen lukuteoria,c:algebrallinen lukuteoria,d:transsendenttilukuteoria,e:diofantiineapproksimaatio,F:lukujen geometria,g:todennäköisyyslukuteoria,h:laskennallinen lukuteoria,i:lukuteoriaja muut kohteet.

4. Algebra

a:linearalgebra,b:ryhmäteoria,c:kenttäteoria,d:lieryhmä,e:liealgebra,f:Kac-Moodyalgebra,g:rengasteoria(sisältää kommutatiivisen rengas-ja kommutatiivisen agebra,assosiatiivisen ja assosiatiivisen agebra,ei-assosiatiivisen ja ei-assosiatiivisen agebra, ei-assosiatiivisena:,etc-assosiatiivisen br. hilateoria,j:universaalialgebrateoria,K:kategoriateoria,l:homologiaalgebra,m:algebraKteoria,n:differentiaalialgebra,o:algebrallinen koodausteoria,p:muut aiheet.

5. Algebrallinen geometria

6. Geometria

a:Perusgeometria,b:euklidinen geometria,c:ei-euklidinen geometria (mukaan lukien riemanniangeometria jne.),d:pallogeometria,e:vektori ja tensorinalyysi,f:affinegeometry,g:projektiivegeometry,h:differential,frajktalgeometry:k. geometria muut aiheet.

7.Topologia

a:pisteasetustopologia,b:algebrallinen topologia,c:homotopyteoria,d:pieniulotteinen topologia,E:homologiateoria,f:ulotteisuusteoria,g:topologia hilassa,h:kuitukimpputeoria,i:geometrinen topologia,j:singulaarisuusteoria,k:differentiaalitopologia ja muut.

8. Matemaattinen analyysi

a:Differentiointi,b:Integraal,c:Sarjateoria,d:Muut matemaattisen analyysin aiheet.

9.Epästandardianalyysi

10. Funktionteoria

a:Reaalimuuttujafunktioteoria,B:yksittäisten ja monimutkaisten muuttujien funktioteoria,c:monikompleksimuuttujien funktioteoria,d:funktion lähentämisen teoria,e:harmoninen analyysi,f:kompleksimanifold,g:erikoisfunktioteoria,h:funktioteoriaja muut kohteet.

11. Tavalliset differentiaaliyhtälöt

a:laadullinen teoria,b:vakausteoria.c:Analyyttinen teoria,d:muut kohteetinäärisiin differentiaaliyhtälöihin.

12.Osittaiset differentiaaliyhtälöt

a:ellipsiosadifferentiaaliyhtälöt,b:hyperboliset osadifferentiaaliyhtälöt,c:paraboliset osadifferentiaaliyhtälöt,D:epälineaariset osadifferentiaaliyhtälöt,e:osittajadifferentiaaliyhtälötja muut tieteenalat.

13.Dynaaminen järjestelmä

a:Differentiaalidynaaminen järjestelmä,b:Topologinendynaaminen järjestelmä,c:Monimutkainen dynaaminen järjestelmä,d: Muut dynaamisen järjestelmän alat.

14.Integra-yhtälö

15. Toiminnallinen analyysi

a:Lineaarioperaattoriteoria,B:variaatiomenetelmä,c:topologinen lineaariavaruus,d:Hilbertspace,e:funktiotila,f:Banachspace,g:operatoralgebra:mitta ja integraali,i:yleisfunktioteoria,j:Epälineaarinen funktion analyysi,k:muut funktionaalisen analyysin osa-alueet.

16. Laskennallinen matematiikka

a:interpolaatio- ja likiarvoteoria,b:numeerinen ratkaisu,c:osiadifferentiaaliyhtälöiden numeerinen ratkaisu,d:integraaliyhtälön numeerinen ratkaisu,e:numeroalgebra,f:diskretisointimenetelmä jatkuville ongelmille,g:satunnainen.

17. Todennäköisyysteoria

a:geometrinen todennäköisyys,b:todennäköisyysjakauma,c:rajateoria,d:satunnaisprosessi (mukaan lukien normaaliprosessi ja kiinteä prosessi, pisteprosessi jne.), e:Markovprosessi,f:satunnaisanalyysi,g:martingaleteoria,h:sovellettu todennäköisyysteoria (erityisesti sovellettu tieteenaloihin).

18.MathematicalStatistics

a:näytteenottoteoria(mukaan lukien otosjakauma,otostutkimus jne.),b:hypoteesitesti,c:ei-parametriset tilastot,d:varianssianalyysi,e:korrelaatioregressioanalyysi,f:tilastollinen päätelmä,g:Bayesin tilastot (mukaan lukien kokeellinen arvio), monimuuttujaanalyysi,j:tilastotTuomioteoria,k:aikasarjaanalyysi,l:muut matemaattisten tilastojen aiheet.

19.Soveltava tilastomatematiikka

a:tilastollisenlaadunvalvonta,b:luotettavuusmatematiikka,c:vakuutusmatematiikka,d:tilastosimulaatio.

20.AppliedstatisticalmathematicsOtherdisciplines

21.Toimintatutkimus

a:lineaarinen ohjelmointi,b:epälineaarinen ohjelmointi,c:dynaaminen ohjelmointi,d:kombinatorinen optimointi,e:parametriohjelmointi,f:kokonaislukuohjelmointi,g:stokastinen ohjelmointi,h:jonoteoria,i:peliteoria (kutsutaan myös peliteoriaksi),j:inventorytheory,k:päätösteoria,l:searchtheory ,m:graafiteoria,n:yleinen suunnitteluteoria,o:optimointi,p:muut toimintatutkimuksen tieteenalat.

22. Kombinatoriikka

23.FuzzyMathematics

24. Kvanttimatematiikka

25.Appliedmathematics(specificapplicationintorelatedsubjects)

26.Matematiikka ja muut oppiaineet

Kehityshistoria

Mathematics(Chinesepinyin:shùxué;Greek:μαθηματικ;English:mathematicsormaths),itsEnglishisderivedfromtheancientGreekμθημα(máthēma),withlearning,Knowledge,andscience.AncientGreekscholarsregardeditasthestartingpointofphilosophy,the"foundationoflearning."Inaddition,thereisamorenarrowandtechnicalmeaning-"mathematicsresearch".Evenwithinitsetymology,themeaningofitsadjectives,whichisrelatedtolearning,isalsousedforindexlearning.

ThepluralforminEnglish,andthepluralforminFrenchwith-es,formmathématiques,whichcanbetracedbacktotheneutralpluralinLatin(mathematica),translatedbyCicerofromthepluralinGreekταμαθηματικά(tamathēmatiká).

MuinainenKiina matematiikkaa kutsuttiin aritmetiikkaksi, jota kutsuttiin myös aritmetiikkaksi ja lopulta muutettiin matematiikaksi. Muinaisen Kiinan aritmetiikka on yksi kuudesta taiteesta (kutsuttiin "numeroksi" kuuden taiteen sisällä).

Mathematicsoriginatedfromtheearlyproductionactivitiesofmankind.TheBabylonianshaveaccumulatedcertainmathematicalknowledgesinceancienttimesandcanapplypracticalproblems.Fromtheperspectiveofmathematics,theirmathematicalknowledgeisonlyobtainedfromobservationandexperience,withoutcomprehensiveconclusionsandproofs,buttheymustfullyaffirmtheircontributionstomathematics.

Theknowledgeandapplicationofbasicmathematicsisanindispensablepartofthelifeofindividualsandgroups.TherefinementofitsbasicconceptscanbekatsoninancientmathematicstextsinancientEgypt,MesopotamiaandancientIndia.Sincethen,itsdevelopmenthascontinuedtomakesmallprogress.Butthealgebraandgeometryatthattimehaveremainedindependentforalongtime.

Algebraisarguablythemostwidelyaccepted"mathematics".Itcanbesaidthatthefirstmathematicsthateveryonecomesintocontactwithisalgebrasincetheylearntocountwhentheyareyoung.Andmathematicsisasubjectthatstudies"number",andalgebraisalsooneofthemostimportantcomponentsofmathematics.Geometryisthebranchofmathematicsthatwasfirststudiedbypeople.

UntiltheRenaissanceinthe16thcentury,DescartesfoundedAnalyticGeometry,linkingthealgebraandgeometrythatwerecompletelyseparateatthattime.Sincethen,wecanfinallyusecalculationstoprovegeometrictheorems;atthesametime,wecanalsousegraphicstovisuallyrepresentabstractalgebraicequationsandtrigonometricfunctions.Later,moresubtlecalculuswasdeveloped.

Currently,mathematicsincludesmultiplebranches.TheBourbakiSchoolofFrance,foundedinthe1930s,believesthatmathematics,atleastpuremathematics,isthetheoryofstudyingabstractstructures.Rakenneisadeductivesystembasedoninitialconceptsandaxioms.Theybelievethatmathematicshasthreebasicparentstructures:algebraicstructure(group,ring,field,lattice,...),orderstructure(partialorder,totalorder,...),topologicalstructure(neighborhood,limit, liitettävyys, mitat,……).

Mathematicsisusedinmanydifferentfields,includingscience,engineering,medicineandeconomics.Theapplicationofmathematicsinthesefieldsisgenerallyreferredtoasappliedmathematics,andsometimesitwillalsostimulatenewmathematicaldiscoveriesandpromotethedevelopmentofnewmathematicsdisciplines.Matemaatikkosalsostudypuremathematics,thatis,mathematicsitself,withoutanypracticalapplicationasthegoal.Althoughthereisalotofworkstartingwiththestudyofpuremathematics,youmayfindsuitableapplicationslater.

Specifically,therearesub-fieldsusedtoexplorethelinksbetweenthecoreofmathematicsandotherfields:fromlogic,settheory(mathematicsfoundation),tomathematicsbasedondifferentscientificexperiences(appliedmathematics),Withmorerecentresearchonuncertainty(chaos,fuzzymathematics).

Intermsofverticality,theexplorationintherespectivefieldsofmathematicshasbecomemoreandmorein-depth.

Määritelmä

Aristotledefinedmathematicsas"quantitativemathematics",andthisdefinitionwasuntilthe18thcentury.Sincethe19thcentury,mathematicalresearchhasbecomemoreandmorerigorous,beginningtoinvolveabstracttopicssuchasgrouptheoryandprojectiongeometrythathavenoclearrelationshipwithquantityandmeasurement.Matemaatikkosandphilosophershavebeguntoproposevariousnewdefinitions.Someofthesedefinitionsemphasizethedeductivenatureofalotofmathematics,someemphasizeitsabstractness,andsomeemphasizecertaintopicsinmathematics.Evenamongprofessionals,thereisnoconsensusonthedefinitionofmathematics.Thereisevennoconsensusonwhethermathematicsisartorscience.[8]Manyprofessionalmathematiciansarenotinterestedinthedefinitionofmathematics,orthinkitisundefinable.Somejustsay,"Mathematicsisdonebymathematicians."

Thethreemaintypesdefinedbymathematicsarecalledlogicians,intuitionists,andformalists,eachofwhichreflectsadifferentphilosophySchoolofThought.Thereareseriousproblems,noonegenerallyacceptsit,andnoreconciliationkatsomsfeasible.

TheearlydefinitionofmathematicallogicwasBenjaminPeirce's"SciencethatDrawsNecessaryConclusions"(1870).InPrincipiaMathematica,BertrandRussellandAlfredNorthWhiteheadproposedaphilosophicalprogramcalledlogicismandtriedtoprovethatallmathematicalconcepts,statements,andprinciplescanbedefinedandprovedbysymboliclogic.ThelogicaldefinitionofmathematicsisRussell's"Allmathematicsissymboliclogic"(1903).

Thedefinitionofintuitionism,fromthemathematicianL.E.J.Brouwer,toidentifymathematicswithcertainspiritualphenomena.Anexampleoftheintuitionisticdefinitionis"mathematicsismentalactivityconstructedoneaftertheother."Thecharacteristicofintuitionismisthatitrejectssomemathematicalideasthatareconsideredvalidaccordingtootherdefinitions.Inparticular,althoughothermathematicalphilosophiesallowobjectsthatcanbeproventoexist,eveniftheycannotbeconstructed,intuitionismonlyallowsmathematicalobjectsthatcanbeactuallyconstructed.

Formalismdefinesmathematicswithitssymbolsandoperatingrules.HaskellCurrysimplydefinesmathematicsas"thescienceofformalsystems."[33]Theformalsystemisasetofsymbols,ortokens,andtherearerulesthattellhowtokensarecombinedintoformulas.Intheformalsystem,thewordaxiomhasaspecialmeaning,whichisdifferentfromtheordinarymeaningof"self-evidenttruth".Inaformalsystem,anaxiomisacombinationoftokenscontainedinagivenformalsystem,withouttheneedtousetherulesofthesystemtoderive.

Rakenne

Manymathematicalobjectssuchasnumbers,functions,andgeometryreflecttheinternalstructureofcontinuousoperationsorrelationsdefinedinthem.Mathematicsstudiesthepropertiesofthesestructures.Forexample,numbertheorystudieshowintegersarerepresentedinarithmeticoperations.Inaddition,thingswithsimilarpropertiesindifferentstructuresoftenhappen.Thismakesitpossibletodescribetheirstatethroughfurtherabstractionandthenuseaxiomsforatypeofstructure.Whatneedstobestudiedistofindoutwhatsatisfiestheseinallstructures.Thestructureofaxioms.Therefore,wecanlearnaboutgroups,rings,domains,andotherabstractsystems.Thesestudies(throughstructuresdefinedbyalgebraicoperations)canformthefieldofabstractalgebra.Becauseabstractalgebrahasgreatversatility,itcanoftenbeappliedtosomekatsominglyirrelevantproblems.Forexample,someancientrulerdrawingproblemsarefinallysolvedusingGaloistheory,whichinvolvesdomaintheoryandgroups.s.Anotherexampleofalgebratheoryislinearalgebra,whichmakesageneralstudyofvectorspacesinwhichtheelementshavequantityanddirectionality.Thesephenomenashowthatgeometryandalgebra,whichwereoriginallyconsideredtobeunrelated,areactuallystronglycorrelated.Combinatorialmathematicsstudiesenumeratethemethodsthatsatisfythenumericalobjectsofagivenstructure.

Avaruus

ThestudyofspacecomesfromEuropeangeometry.Trigonometrycombinesspaceandnumber,andincludesthefamousPythagoreantheorem,trigonometricfunctions,etc.Today'sresearchonspacehasbeenextendedtohigher-dimensionalgeometry,non-Euclideangeometryandtopology.Numberandspaceplayimportantrolesinanalyticgeometry,differentialgeometryandalgebraicgeometry.Indifferentialgeometry,thereareconceptssuchasfiberbundlesandcalculationsonmanifolds.Inalgebraicgeometry,therearedescriptionsofgeometricobjectssuchasthesolutionsetofpolynomialequations,combiningtheconceptsofnumberandspace;thereisalsothestudyoftopologicalgroups,combiningstructureandspace.LiQunisusedtostudyspace,structureandchange.

Perusasiat

Vallankumouksen pinta (10 arkkia)

Pääartikkeli: Matemaattiset perusteet

TomakeitclearThefieldsofmathematicalfoundations,mathematicallogicandsettheoryweredeveloped.TheGermanmathematicianKantor(1845~1918)pioneeredsettheoryandboldlymarchedtowards"infinity",inordertoprovideasolidfoundationforallbranchesofmathematics,anditscontentisalsoquiterich.Thoughthasmadeaninestimablecontributiontothefuturedevelopmentofmathematics.

Settheoryhasgraduallypenetratedintovariousbranchesofmathematicsintheearly20thcenturyandhasbecomeanindispensabletoolinanalysistheory,measurementtheory,topologyandmathematicalsciences.Atthebeginningofthe20thcentury,themathematicianHilbertspreadCantor'sideasinGermany,callingsettheorythe"mathematician'sparadise"and"themostamazingproductofmathematicalthought."TheBritishphilosopherRussellpraisedCantor'sworkas"thegreatestworkthatthiseracanboast."

Logiikka

Mainarticle:Mathematicallogic

MathematicallogicfocusesonputtingmathematicsinoneOnasolidaxiomaticframework,andstudytheresultsofthisframework.Foritspart,itistheoriginofGödel'ssecondincompletenesstheorem,andthisisperhapsthemostwidelyspreadresultinlogic.Modernlogicisdividedintorecursiontheory,modeltheory,andprooftheory,anditiscloselyrelatedtotheoreticalcomputerscience.

Symbolit

Mainarticle:Mathematicssymbols

MaybetheancientChinesecalculatoristheworld’sOneoftheearliestusedsymbolsoriginatedfromdivinationintheShangDynasty.

Mostofthemathematicalsymbolsweusetodaywerenotinventeduntilthe16thcentury.Priortothis,mathematicswaswritteninwords,whichwasanassiduousprogramthatwouldlimitthedevelopmentofmathematics.Today'ssymbolsmakemathematicseasierforpeopletooperate,butbeginnersoftenfeeltimidaboutthis.Itisextremelycompressed:afewsymbolscontainalotofinformation.Likemusicalnotation,today'smathematicalnotationhasacleargrammarandinformationcodesthataredifficulttowriteinotherways.

Tiukkaus

Mathematicslanguageisalsodifficultforbeginners.Howtomakethesewordshavemoreprecisemeaningsthandailyexpressionsalsotroublesbeginners.Wordssuchasopenanddomainhavespecialmeaningsinmathematics.Mathematicaltermsalsoincludepropernounssuchasembryoandintegrability.Butthereisareasonforusingthesespecialsymbolsandproprietaryterms:mathematicsrequiresmoreprecisionthaneverydaylanguage.Matemaatikkoscallthisrequirementfortheaccuracyoflanguageandlogic"rigorous."

Mathematicsisauniversalmethodforhumanstostrictlydescribetheabstractstructureandpatternsofthings,anditcanbeappliedtoanyproblemintherealworld.Inthissense,mathematicsisaformalscience,notanaturalscience.Allmathematicalobjectsareessentiallyartificiallydefined.Theydonotexistinnature,butonlyinhumanthinkingandconcepts.Therefore,thecorrectnessofmathematicalpropositionscannotbeverifiedbyrepeatableexperiments,observations,ormeasurementslikenaturalsciences,suchasphysicsandchemistry,whosegoalistostudynaturalphenomena.Instead,theycanbedirectlyprovedbyrigorouslogicalreasoning.Oncetheconclusionisprovedthroughlogicalreasoning,thentheconclusioniscorrect.

Theaxiomatizationmethodofmathematicsisessentiallythedirectapplicationoflogicmethodsinmathematics.Intheaxiomsystem,allpropositionsareconnectedbyrigorouslogic.Startingfromtheoriginalconceptthatisdirectlyadoptedwithoutdefinition,otherderivedconceptsaregraduallyestablishedthroughthemeansoflogicaldefinition;startingfromtheaxiomthatisdirectlyadoptedasthepremisewithoutproof,andthelogicaldeductionmethodisusedtograduallyobtainfurtherTheconclusionisthetheorem;thenalltheconceptsandtheoremsarecombinedintoawholewithinternallogicalconnection,whichconstitutestheaxiomsystem.

Strictnessisaveryimportantandbasicpartofmathematicalproof.Matemaatikkoshopethattheirtheoremscanbededucedbasedonaxiomswithsystematicreasoning.Thisistoavoidrelyingonunreliableintuitionstoarriveatwrong"theorems"or"proofs,"andthissituationhaskatsonmanyexamplesinhistory.Thedegreeofrigorexpectedinmathematicsvarieswithtime:theGreeksexpectedcarefularguments,butinNewton’stimethemethodsusedwerelessrigorous.Newton'sdefinitiontosolvetheproblemwasnotproperlyhandleduntilthe19thcenturybymathematicianswithrigorousanalysisandformalproof.Matemaatikkoscontinuetoargueabouttherigorofcomputer-aidedproofs.Whenalargenumberofcalculationsaredifficulttoverify,theproofcanhardlybesaidtobeeffectiveandrigorous.

Määrä

Thestudyofquantitystartswithnumbers,startingwithfamiliarnaturalnumbersandintegersandrationalandirrationalnumbersdescribedinarithmetic.

Tobespecific:Duetotheneedofcounting,humansabstractnaturalnumbersfromrealthings,whicharethestartingpointofall"numbers"inmathematics.Naturalnumbersarenotclosedtosubtraction.Inordertoclosetosubtraction,weexpandthenumbersystemtointegers;tonotclosetodivision,andtoclosetodivision,weexpandthenumbersystemtorationalnumbers;forsquarerootoperations,weexpandthenumbersystemtorationalnumbers.Thesystemisextendedtoalgebraicnumbers(infact,algebraicnumbersareabroaderconcept).Ontheotherhand,thelimitoperationisnotclosed,andweextendthenumbersystemtorealnumbers.Finally,inordertopreventnegativenumbersfrombeingunabletoraikatsovenpowersintherealnumberrange,weextendthenumbersystemtocomplexnumbers.Complexnumbersarethesmallestalgebraiccloseddomainscontainingrealnumbers.Weperformfourarithmeticoperationsonanycomplexnumber,andthesimplificationresultsareallcomplexnumbers.

Anotherconceptrelatedto"quantity"isthe"potential"ofinfinitesets,whichleadstothecardinalnumberandanotherconceptofinfinityafterwards:theAlephnumber,whichallowstheinfinitesetbetweenThesizecanbemeaningfullycompared.

Lyhyt historia

Lyhyt historiaofWesternMathematics

Theevolutionofmathematicscanberegardedasthecontinuousdevelopmentofabstraction,ortheextensionofthesubjectmatter,whiletheEastandWestCulturehasalsoadoptedadifferentperspective.Europeancivilizationhasdevelopedgeometry,whileChinahasdevelopedarithmetic.Thefirstabstractedconceptisprobablythenumber(Chinesecomputingchip).Therecognitionofsomethingsimilarbetweentwoapplesandtwoorangesisabreakthroughinhumanthinking.Inadditiontoknowinghowtocountthenumberofactualobjects,prehistorichumansalsoknowhowtocountthenumberofabstractconcepts,suchastime—days,seasons,andyears.Arithmetic(addition,subtraction,multiplication,anddivision)alsoarisesnaturally.

Furthermore,youneedwritingorothersystemsthatcanrecordnumbers,suchasFumuortheChipusedbytheIncas.Therehavebeenmanydifferentcountingsystemsinhistory.

Inancienttimes,themainprincipleinmathematicswastostudyastronomy,thereasonabledistributionoflandandfoodcrops,taxationandtraderelatedcalculations.Mathematicsisformedtounderstandtherelationshipbetweennumbers,tomeasuretheland,andtopredictastronomicalevents.Theseneedscanbesimplysummarizedasmathematicalresearchonquantity,structure,spaceandtime.

WesternEuropewentthroughtheRenaissanceerafromancientGreecetothe16thcentury.Elementaryalgebraandtrigonometryaregenerallycomplete,buttheconceptoflimithasnotyetappeared.

TheemergenceoftheconceptofvariablesinEuropeinthe17thcenturymadepeoplebegintostudytheinterrelationshipsbetweenchangingquantitiesandthemutualtransformationsbetweenfigures.Duringtheestablishmentofclassicalmechanics,themethodofcalculuscombinedwithgeometricprecisionwasinvented.Withthefurtherdevelopmentofnaturalscienceandtechnology,thefieldsofsettheoryandmathematicallogic,whichareproducedtostudythefoundationofmathematics,havealsobeguntodevelopslowly.

ABriefKiinan matematiikan historia

Pääartikkeli:Kiinan matematiikan historia

Theancientnameofmathematicsisarithmetic.ItisanimportantsubjectinancientChinesescience.AccordingtoancientChinesemathematicsThecharacteristicsofdevelopmentcanbedividedintofiveperiods:budding;formationofthesystem;development;prosperityandtheintegrationofChineseandWesternmathematics.

Liittyvät

ManyoftheresearchresultsofancientChinesearithmetichavealreadyconceivedideasandmethodsthatwereonlyinvolvedinWesternmathematics.Inmoderntimes,therearealsomanyworld-leadingmathematicsresearchresultsbasedonChineseNamedbythemathematician:

[LiShanlan'sIdenticalEquation]TheresearchresultsofthemathematicianLiShanlanonthesumofseries,Itisnamed"LiShanlan'sidentity"(orLi'sidentity)intheworld.

[FahrenheitTheorem]MatemaatikkoHuaLuogeng’sresearchresultsoncompletetrigonometricsumsarecalled"FahrenheitTheorem”;inaddition,themethodheproposedwithmathematicianWangYuanfortheapproximatecalculationofmultipleintegralsisknowninternationallyasthe“Hua-WangMethod”.

[Su’sCone]MatemaatikkoSuBuqing’sresearchachievementsinaffinedifferentialgeometryareinternationallyItwasnamed"Su'sCone".

[Xiong'sinfiniteorder]MatemaatikkoXiongQinglai'sresearchresultsonwholefunctionsandmeromorphicfunctionsofinfiniteorderItishailedas"Xiong'sInfiniteClass"bytheinternationalmathematicscircle.

[Representatives]TheresearchresultsofthemathematicianChenXingshenonindicativecategoriesareinternationallyknownas"Presentationalcategory".

[Zhou'sCoordinatesMatemaatikkoZhouWeiliang’sresearchinalgebraicgeometryTheresultiscalled"Zhou'sCoordinates"bytheinternationalmathematicscircle;therearealso"Zhou'sTheorem"and"Zhou'sRing"namedafterhim.

[WuThemethod]ThemethodofthemathematicianWuWenjunonthemechanicalproofofgeometrictheoremsisinternationallyknownasthe"Wu'smethod";thereisalsothe"Wu'sformula"namedafterhim.p>

[Wang’sParadoxMatemaatikkoWangHao’spropositiononmathematicallogicwasInternationallydefinedas"Wang’sParadox."

[Korot'sTheoremMatemaatikkoKeZhao'squestionaboutCarterTheresearchresultsofLan’sproblemarecalled"Kot'stheorem"bytheinternationalmathematicscommunity;inaddition,theresearchresultsofhisandmathematicianSunQiinnumbertheoryarecalled"Ke-SunConjecture"intheworld.

[Chen’sTheorem]ThepropositionputforwardbymathematicianChenJingruninthestudyofGoldbach’sconjectureishailedas"Chen’sTheorem"bytheinternationalmathematicscommunity.

[Yang-ZhangTheorem]TheresearchresultsofmathematiciansYangLeandZhangGuanghouinfunctiontheoryarecalled"Yang-ZhangTheorem"internationally.".

[Lu’sConjecture]MatemaatikkoLuQikeng’sresearchresultsonmanifoldswithconstantcurvatureareknowninternationally"Lu’sConjecture".

[Xia’sInequality]MatemaatikkoXiaDaoxing’sresearchresultsonfunctionalintegralsandinvariantmeasuretheoryarecalled"Xia’sinequality".

[Jiang’sspace]MatemaatikkoJiangBoju’sresearchresultsonthecalculationofNielsennumbershavebeenrecognizedinternationally.Theaboveisnamed"Jiang'sAvaruus";thereisalso"Jiang'sSubgroup"namedafterhim.

[Hou'sTheoremMatemaatikkoHouZhenting’sresearchresultsonMarkovprocesseshavebeennamed"Hou'sTheorem"internationally.

[Zhou'sguessb>]MatemaatikkoZhouHaizhong’sresearchresultsonthedistributionofMersenneprimenumbersareinternationallynamed"Zhou’sConjecture".

[Wang’sTheorem]MatemaatikkoWangXutang’sresearchresultsonpointsettopologyarehailedas"Wang’sTheorem"bytheinternationalmathematicscommunity.

[Yuan"Yuan'sLemma"]MatemaatikkoYuanYaxiang’sresearchresultsinnonlinearprogramminghavebeennamed"Yuan'sLemma"internationally.

Jing’soperatorMatemaatikkoJingNaihuan’sresearchachievementsinsymmetricfunctionsGuoisnamed"Jing'sOperator"internationally.

[Chen’sGrammar]TheresearchresultsofmathematicianChenYongchuanincombinatoricswerenamed"Chen'sGrammar".

Matemaattiset lainaukset

Ulkomaiset esineet

Kaikki laskettiin. -- Pythagoras

Geometryhasnoking'sway.——Euklidinen

MathematicsisthewordsusedbyGodtowritetheuniverse.——Galileo

Iamdeterminedtogiveupthatmereabstractgeometry.Thatistosay,nolongerconsiderquestionsthatareonlyusedtopracticethinking.Ididthistostudyanotherkindofgeometry,thatis,geometrythataimstoexplainnaturalphenomena.——Descartes(ReneDescartes,1596~1650)

Matemaatikkosarealltryingtodiscoversomeorderoftheprimenumbersequenceonthisday.Wehavereasontobelievethatthisisamystery,andthehumanmindcanneverinfiltrate.——Euler

Somebeautifultheoremsinmathematicshavesuchcharacteristics:Theyareeasytogeneralizefromfacts,buttheproofsareextremelyhidden.Mathematicsisthekingofscience.——Gauss

Tämä on hyvin jäsennellyn kielen etu, ja sen yksinkertaistetut huomautukset pehmentävät esoteeristen teorioiden lähdettä.—Laplace (PierreSimonLaplace, 1749~1827)

Itwouldbeaseriousmistaketothinkthatthereisnecessityonlyingeometricproofsorsensoryevidence.——AugustinLouisCauchy(1789~1857)

Matematiikan ydin on vapaudessa. — Cantor (GeorgFerdin ja LudwigPhilippCantor, 1845–1918)

Musiccaninspireorsoothefeelings,paintingcanmakepeoplepleasingtotheeye,poetrycanmovetheheartstrings,philosophycangivepeoplewisdom,andsciencecanimprovemateriallife,Butmathematicscangivealloftheabove.——Klein(ChristianFelixKlein,1849-1925)

Aslongasabranchofsciencecanaskalotofquestions,itisfullofvitality,andthelackofproblemsheraldstheendordeclineofindependentdevelopment.——Hilbert(DavidHilbert,1862~1943)

Matematiikan sydämen ongelma.——PaulHalmos (PaulHalmos,1916~2006)

Aika on vakio, mutta ahkeralle, on "muuttuva". Ihmistalon "minuutteilla"aikalaskennassa on 59 kertaa enemmän aikaa kuin omalla talolla "tunteja"ajan laskemikatson.——Rybakov

Kiinalaiset merkit

Thingsareanalogous,eachhasitsownmerits,soalthoughthebranchesaredivided,theysharethesameknowledge,butonlyoneend.Thereasonisanalyzedwithwords,andpicturesareusedfordisintegration.Theconcubinealsomakesappointmentsandcanbecircumscribed.——LiuHui

Sairauden viivästymisen nopeus on epäkeskinen, käsin kosketeltava ja havaittavissa, ja siinä on useita paineita.——ZuChongzhi(429~500)

Newmathematicalmethodsandconceptsareoftenmoreimportantthansolvingmathematicalproblemsthemselves.——HuaLuogeng

Themathematicalexpressionisaccurateandconcise,thelogicisabstractanduniversal,andtheformisflexibleandchangeable.Itisanidealtoolforcosmiccommunication.——ZhouHaizhong

Scienceneedsexperimentation.Buttheexperimentcannotbeabsolutelyaccurate.Ifthereisamathematicaltheory,itisentirelycorrectbyrelyingoninference.Thereasonwhysciencecannotleavemathematics.

Manybasicscientificconceptsoftenneedmathematicalconceptstoexpress.Somathematicianshavefoodtoeat,butitisnaturalthattheycannotwintheNobelPrize.ThereisnoNobelPrizeinmathematics,whichmaybeagoodthing.TheNobelPrizeistoocompellingandpreventsmathematiciansfromfocusingontheirownresearch.——ChenXingshen

Aftermodernhigh-energyphysicsarrivedatquantumphysics,thereweremanyexperimentsthatcouldn’tbedoneatall.Usingpenandpapertocalculateathome,thisisnotfarfromwhatmathematiciansthought,somathematicsisinphysics.Hasincrediblepower.——QiuChengtong

Payattentiontotheorderofreadingandwritinghomework.Wemustdevelopgoodlearningmethods,trytoreviewtheknowledgelearnedthatdaywhenwegohome,especiallythenoteswetake,andthenwritehomework,sothattheeffectwillbebetter.

Välimerkit

Mathematicsisaninternationalsubjectthatrequiresrigorousnessinallaspects.

Mathematicsofelementarylevelandaboveinmycountrycanberegardedasscientificandtechnologicalliterature.

mycountrystipulatesthatthefullstopofbibliographicarticlesmustuse".".Mathematicsisusedforthispurpose,secondlytoavoidconfusionwithsubscripts,andthirdlybecausemycountryhassubmittedinternationalresearchreportsonmathematics,Buttheydonotuseit,becausemostforeignperiodsarenot".".

Intheproofquestion,""shouldbeusedafter∵(koska),and"."shouldbeusedafter∴(niin).Jos suuressa kysymyksessä on useita pieniä kysymyksiä, jokainen kysymys päättyyConnect";",käytä"."lopettaaksesi viimeisen kysymyksen⑑loppunumeron,ja käyttää";"kysyntää"

Kurinalaisuus

Universitieswithfirst-levelmathematicsdisciplinesofnationalkeydisciplines:

Pekingin yliopisto

PekingUnionMedicalCollege-Tsinghuan yliopistoSchoolofMedicine

Tsinghuan yliopisto

Pekingin Normaaliyliopisto

p>

Nankain yliopisto

Jilinin yliopisto

Fudanin yliopisto

Nanjingin yliopisto

ZhejiangUniversity

Kiinan tiede- ja teknologiayliopisto

Shandongin yliopisto

SichuanUniversity

(Note:1Thesecond-leveldisciplinescoveredbythenationalkeydisciplinesareallnationalkeydisciplines.)

Universitieswiththesecond-levelnationalkeydisciplinesofmathematics(notincludingtheabovelist)

b>:

Perusmatematiikka

SunYat-Senin yliopisto

CapitalNormal University

Xiamenin yliopisto

Itä-Kiinan normaaliyliopisto

Wuhanin yliopisto

Laskennallinen matematiikka

Xiangtanin yliopisto

DalianLi teknologiayliopisto

Xi’anJiaotongUniversity

Todennäköisyysteoria ja matemaattinen tilasto

Central South University

Soveltava matematiikka

XinjiangUniversity

Operatiivinen tutkimus ja kybernetiikka

(ei mitään)

Kaava

Kaava on tärkeä osa matematiikkaa.Esimerkki...

katso

  • PureMathematics,Soveltava matematiikka

  • Elementary Mathematics, Advanced Mathematics

  • Moderni matematiikka, moderni matematiikka

  • Matemaattiset menetelmät

  • Matemaattiset ongelmat

  • Matemaatikko

  • Matematiikan lainaukset

  • Matematiikan historia

  • Kiinan matematiikan historia

  • MatematiikkaKulttuuri

  • Matemaattiset kaavat

  • Matematiikan termit

  • Jatkuva

Kahdeksan ongelmaa

Thefirstsevenproblemsarerecognizedasthesevenproblems,andtheeighthproblemisoneoftheworld’sthreemajorconjectures.

1.P(polynomialgoritmi)ongelmavs.NP(ei-polynomialgoritmi)ongelma

OnaSaturdaynight,youparticipatedinagrandParty.Feelingembarrassed,youwanttoknowiftherearepeopleyoualreadyknowinthishall.YourhostsuggestedtoyouthatyoumustknowtheladyRosewhoisnearthecornerofthedessertplate.Withinasecond,youcanscanthereandfindthatyourmasteriscorrect.However,ifthereisnosuchhint,youhavetolookaroundtheentirehallandexamineeveryoneonebyonetokatsoifthereisanyoneyouknow.Generatingasolutiontoaproblemusuallytakesmuchmoretimethanverifyingagivensolution.Thisisanexampleofthisgeneralphenomenon.

Similarly,ifsomeonetellsyouthatthenumber13,717,421canbewrittenastheproductoftwosmallernumbers,youmaynotknowwhetheryoushouldtrusthim,butifhetellsyouItcanbefactoredinto3607times3803,soyoucaneasilyverifythatthisiscorrectwithapocketcalculator.Regardlessofwhetherwewriteprogramsdexterously,determiningwhetherananswercanbequicklyverifiedusinginternalknowledge,orwhetherittakesalotoftimetosolvewithoutsuchhintsisregardedasoneofthemostprominentproblemsinlogicandcomputerscience.ItwasstatedbyStephenCookin1971.

Toiseksi, Hodge-arvelu

Matemaatikkosofthe20thcenturydiscoveredapowerfulwaytostudytheshapeofcomplexobjects.Thebasicideaistoaskhowfarwecanformtheshapeofagivenobjectbygluingtogethersimplegeometricbuildingblockswithincreasingdimensions.Thistechniquehasbecomesousefulthatitcanbepromotedinmanydifferentways;iteventuallyleadstosomepowerfultoolsthatenablemathematicianstoachievegreatresultsinclassifyingthevariousobjectsencounteredintheirresearch.progress.Unfortunately,inthispromotion,thegeometricstartingpointoftheprogrambecomesblurred.Inacertainsense,certainpartswithoutanygeometricexplanationmustbeadded.Hodge'sconjectureassertsthatforaparticularlyperfecttypeofspacesuchastheso-calledprojectivealgebraicvariety,thecomponentscalledHodgeclosedchainsareactually(rationallinear)combinationsofgeometriccomponentscalledalgebraicclosedchains.

3. Poincaren olettamus (on todistettu)

Ifwestretcharubberbandaroundthesurfaceofanapple,thenwecanbothDon'ttearitoff,don'tletitleavethesurface,makeitmoveslowlyandshrinktoapoint.Ontheotherhand,ifweimaginethatthesamerubberbandisstretchedonatiresurfaceintheproperdirection,thereisnowaytoshrinkittoapointwithoutbreakingtherubberbandorthetiresurface.WesaythatthesurfaceoftheAppleis"singlyconnected",butthetiresurfaceisnot.Aboutahundredyearsago,Poincaréalreadyknewthatatwo-dimensionalspherecanessentiallybedescribedbysimpleconnectivity.Heproposedthecorrespondenceproblemofathree-dimensionalsphere(afour-dimensionalspace)thathasaunitdistancefromtheorigin.Thisproblemimmediatelybecameextremelydifficult,andsincethen,mathematicianshavebeenstrugglingwithit.

Neljä.Riemannnin hypoteesi

Somenumbershavespecialpropertiesthatcannotbeexpressedastheproductoftwosmallernumbers,forexample:2,3,5,7andsoon.Suchnumbersarecalledprimenumbers;theyplayanimportantroleinpuremathematicsanditsapplications.Inallnaturalnumbers,thedistributionofthisprimenumberdoesnotfollowanyregularpattern;however,theGermanmathematicianRiemann(1826~1866)observedthatthefrequencyofprimenumbersiscloselyrelatedtoacarefullyconstructedso-calledRiemannZetafunctionThebehaviorofz(s).ThefamousRiemannhypothesisassertsthatallmeaningfulsolutionstotheequationz(s)=0areonastraightline.Thishasbeenverifiedforthefirst1,500,000,000solutions.Provingthatitistrueforeverymeaningfulsolutionwillbringlighttomanymysteriessurroundingthedistributionofprimenumbers.

5.Yang-Millsexistenceand masssgap

Thewayoftheworldisestablishedfortheworldofelementaryparticles.Abouthalfacenturyago,YangZhenningandMillsdiscoveredthatquantumphysicsrevealedastrikingrelationshipbetweenelementaryparticlephysicsandthemathematicsofgeometricobjects.ThepredictionbasedontheYoung-Millsequationhasbeenconfirmedinthefollowinghigh-energyexperimentsperformedinlaboratoriesaroundtheworld:Brockhaven,Stanford,EuropeanInstituteofParticlePhysics,andTsukuba.Nevertheless,theirequationsthatdescribeheavyparticlesandaremathematicallyrigoroushavenoknownsolutions.Inparticular,the"massgap"hypothesis,whichisconfirmedbymostphysicistsandappliedintheirexplanationoftheinvisibilityof"quarks",hasneverreceivedamathematicallysatisfactoryconfirmation.Progressonthisissuerequirestheintroductionoffundamentallynewconceptsinbothphysicsandmathematics.

6.TheexistenceandsmoothnessoftheNavier-Stokesequation

TheundulatingwavesfollowusTheboatiswindingthroughthelake,andtheturbulentaircurrentfollowstheflightofourmodernjetplane.MatemaatikkosandphysicistsareconvincedthatbothbreezeandturbulencecanbeexplainedandpredictedbyunderstandingthesolutionoftheNavier-Stokesequation.Althoughthekatsoquationswerewritteninthe19thcentury,westillhaveverylittleunderstandingofthem.ThechallengeistomakesubstantialprogressinmathematicaltheorysothatwecansolvethemysteryhiddenintheNavier-Stokesequation.

Seitsemän.BirchandSwinnerton-Dyer-arvelu

Matemaatikkosarealwaysreferredtoasx^2+y^2=z^2andthecharacterizationofallintegersolutionsofalgebraicequationsisfascinating.Euclidoncegaveacompletesolutiontothisequation,butformorecomplexequations,thisbecomesextremelydifficult.Infact,asYu.V.Matiyasevichpointedout,Hilbert’stenthproblemisunsolvable,thatis,thereisnogeneralmethodtodeterminewhethersuchamethodhasanintegersolution.WhenthesolutionisapointofanAbeliancluster,BechandSwinnerton-DellconjecturethatthesizeofthegroupofrationalpointsisrelatedtothebehaviorofaZetafunctionz(s)nearthepoints=1.Inparticular,thisinterestingconjectureholdsthatifz(1)isequalto0,thenthereareaninfinitenumberofrationalpoints(solutions);onthecontrary,ifz(1)isnotequalto0,thenthereareonlyafinitenumberofsuchpoints.

Kahdeksan. Goldbachin arvelu

InalettertoEuleronJune7,1742,Goldbachproposedthefollowingconjecture:a)Anyevennumbernotlessthan6canbeexpressedasthesumoftwooddprimenumbers;b)Anyoddnumbernotlessthan9canbeexpressedasthesumofthreeoddprimenumbers.Euleralsoproposedanotherequivalentversioninhisreply,thatis,anyevennumbergreaterthan2canbewrittenasthesumoftwoprimenumbers.UsuallythesetwopropositionsarecollectivelyreferredtoasGoldbach'sconjecture.Theproposition"Anybigevennumbercanbeexpressedasthesumofanumberwithnomorethanaprimefactorandanothernumberwithnomorethanbprimefactors"isrecordedas"a+b",theCorinthiansconjectureistoprove"1+1"isestablished.

Vuonna 1966 ChenJingrun osoitti "1+2":n perustamisen, toisin sanoen "Jokainen iso pariluku voidaan ilmaistaalkuluvun ja toisen päätekijän summana, joka ei ylitä2".

ThecontentofBaiduEncyclopediaisco-editedbynetizens.Ifyoufindthatthecontentofyourentryisinaccurateorimperfect,pleaseusemyentryeditingservice(free)toparticipateinthecorrection.Gonow>>

Related Articles
TOP