Esittely
Perustiedot
FuzzylogicreferstoteheuncvartyConceptJudgmentAndReasoningThinkingModeThatimitatShehehumanbrain.ForedescriptionsystemofunknownoruncettureModel, Aswellascontrolobjectswithstrongnonlinearityandlargelag, Usefuzzytsandfuzzyyrulesforreasoning, expressTransitionalboundesorqualitativedgeanDexperience.ongelma.Fuzzylogicisgoodatexpressingqualitatiiviset tietämykset.Itusestheconceptofmembershipfunctiontodistinguishfuzzysets,processfuzzyrelationships,simulatethehumanbraintoimplementrule-basedreasoning,andsolvethevariousongelmascausedbythelogicalfailureofthe"lawofexcludedmiddle".Identifytheongelma.
Historiallinen kehitys
Vuonna 1965 amerikkalainen matemaatikko.ZadehFirstProPotedTheConceptoffUzzySet, merkitsemällä.TeoriginallogicandmathematicsbasedonbinaryLogicarediffultodescribeandDealwithmanyVagueObjectSintherealworld.FuzzymathematicsandfuzzylogicessessentiallydescribeandprocessfuzzyobjectSaccurated.
IndertoestablishamathematicalModeloffuzzyobjects, L.Zadehextendedtheconceptofordinarysetsthatonlytakethebinaryvaluesof0and1totheconceptoffuzzysetsthattakeinfinitelymanyvaluesontheinterval[0,1]."DegreefMembership" andusethEconcept of "DegreefMembership" TOACCURESTYDESCRIBOBECHONSHICHBETBETIESSILESSILLESSIFUZZYSS -sovellukset.Preciselybecausefuzzysetsarebasedoncontinuousinfinitelymanyvalues,fuzzylogiccanberegardedasthescienceofusingfuzzysetsofinfinitecontinuousvaluestostudyfuzzyobjects.SomebasicconceptsandMethodsoffuzzyMathematicsarApiedToTheFieldOflogic, tuloksena oleva.Vastaavat ComparativerESearchisAnSomadeOnfuzzyConnectiesdandfuzzytruthtables.ChadalsocriedoutresearchonlikeliOnferencesuchasfuzzyhypothesisInference ja.
Theinainsignicancefestablishingdresearchingfuzzylogicis:
(1) UsenewideasandNewtheoriessuchasfuzzylogicvariables, fuzzylogicfunctionsandlikelIOnInferencetofindSolutionStofuzzyLogic.Thebreakthroughofsexualongelmaslaidatheoreticalfoundationandpointedoutthedirectionforstudyingfuzzyobjectsfromalogicalpointofview.
(2) fuzzylogicisUniqueintheautomaticcontrolprocessThatisdiffultOnTodescribeandprocesswiththeoriginalBooleanalgebra, binaryLogicandothermathematicsandLogictools, theediagnosisofiffultdiseases, theesearchoflarge-scalesytems, jne..Paikka.
(3) Intermethodologia, It ProvididesCorrectResearchMethodsforHumanresearchFromaccuracyToVagueness and FromcaneTouncancety.Lisäksi matematiikan tutkimuksen mukaan fuzzylogiccanhelpsolvesomeParadoxes.Theestudyofdialekticallogicwillalsohaveaprofoundimpact.Tietysti, fuzzylogictheoryitelfneedstobefurthersystematisoitu, täydellinen ja standardoitu.
Perusteoria
FuzzylogicisatautologyfaryLogic: inmulti-arvoinenloginen, annettavaanMv-AlgebraA, ana-arvioitujavaltiottujafromthepropositionTheTeTofformulasinmv-Algebraicfunctions.IFTHIFICUNCHUONMAPSAFORMULATO1 (OR0) FORALLA-arvioinnit, ThentHeformulaisana-tautologia.Siksi forInfinite-arvoinenloginen (sucasfuzzylogicandVukasevichLogic), weset [0,1] tobethelowersetofatoobtain [0,1] -valmiuation ja 0,1] -tautologia (useinScalleDeVauationandtautology).ChanginTentedMV-AlgebratoStudyThemult-arvoinenLogicThatPolishMathematicianJan? Ukasiewicz (Janukasiewicz) Intervenedin1920.Chang'scompleenessTheOorem (1958, 1959) Statesthatanymv-algebraequationthatholdsinTheintHinterval [0,1] myös.Tämän läpi tämän läpi.Myöhemmä.Tämä.SimilarToTheBooleanalgebraequationThatholdsin {0,1} AndholdsinyBooleanalgebra.Booleanalgebrathereforecharacterizesstandardtwo-arvoinenloginen.
Soveltaminen
FuzzylogiccanbeUnedTocontrolhouseHoldApplianCessuchaswashingMachines (sensestHeloaDandDetergentConcentrationAdJustsheirwashingcycleaccordingy) jairconditions.
BasicSoveltaminensCanbeCharacterizedAssubranesOfcontuleSVariables, usein.Exexances, theTemperaturemeasurementofananti-lockbrakecanhavemultipleIndedentMembershipfunctions (Jäsenfunktio), jotka antavat mahdollisuudet.Jokainen functionmapsTheSametEMperatureToAValueintherangeOf0To1andisanon-ConCaveFunction (muuten.Thesetruevaluescanthenbeusedtodeterminehowthebrakesshouldbecontrolled.
InFigure1,cold,warm,andhotarefunctionsofthemappedtemperaturerange.ApointonThisscalehasthree "totuusarvot" - yksi foreachfunction.Forthespecifictemperatureshown,thesethreetruevaluescanbeinterpretedasdescribingthetemperatureas"quitecold","somewhatwarm"and"nothot".
Yleensä trapezoidisoitu, buttheatributionfunctionftRIngleSUsedforfuzzyRegressionanalysis.
Sumuinen logiikka (4 kuvaa)
FuzzylogicusuallyusesIF/THENrules,orconstructsequivalentthingssuchasfuzzyincidencematrix.TheruleisusuuruuruuredInThefollowingForm:
IffuzzyVariableSfuzzyTHenaction
Esimerkiksi Averyn yksinkertainen lämpötilan säädin tuulettimen avulla:
IftemperatureSverycoldTheNstopthefan
IftemperatureSiscoldTheDeCelerationFan
IftemperatureisnormalTheKeepTheCurrentLevelvel
IftemperatureishtHenaccelationFan
MotthatThereisno "else".AllrulesareAVAILEDBECAUSETETEMPERATECANBE "Kylmä" ja "Normaali" AtthesametimeTovaryingDegrees.
Siellä olevat ja ja, ja ei -operatorsInBooleanLogInfuzzyLogic.Theyareusuallydefinedasminimum,maximum,andcomplement;whentheyaredefinedinthisway,theyarecalledZadehoperatorsbecausetheywerefirstdefinedinZadeh'soriginalpaper.Forfuzzyvariablesxandy:
NOTx=(1-truth(x))xANDy=minimum(truth(x),truth(y))xORy=maximum(truth(x),truth(y))canalsouseotheroperatorscalledhedgeswhichareclosertonaturallanguage.GeneralAdverbssuchas "erittäin" tai "pienen" kanusematemaattinen formulastoMoDifyTheConnoTationofaset.
Ohjelmointikieli
Soveltaminen, ProgramminganganguagePrologisverySitbleForimplementfuzzyLogicDueTootsDataBasefacelityTetsetsUp "Säännöt", jotka.Tämä.
ResearchObject
ToclarifyTheSearchObjectoffuzzylogic, youmustfirstnowthelogibalReseartObject, becausefuzzylogicisonlyadevelopmentbasedonClassicallogic.Haaran kurinalaisuus.AslongastheresearchobjectOfLogicisclarfief, TheentheresearchObjectoffuzzylogicWillbeEasyToundernsand.SowhatexActLESTherESearchObjectOfLogic? ThereareVarioSanswerstohisquestion."
TheObjectSofLogicCanbedIivideToThOtHowingViewPointSFromabroadPerspektive:
(1) LogicisthestudyoftHinking;
(2) LogicisthestudyofTheObjectiveWorld;
(3) LogicisthestudyofLanguage;
(4) LogicisthestudyfThit -valmityformOfreasoning."
ThisisasumarymadebyThefamousdomcICSCHOLARCHENBO.Kirja, ChenboanalyzedTheAboveFourviewPointSonebyOne, jaPlotOutTheadVanTagesandDisadvantagesOfVariousViewPoints.Lopuksi, heputforwardhisownview, hebelievedthattheresearchobjectOflogicistHevalidityOfreasoningForm.Tämä katselujen tunnistaminen.Inlayman'sterms: TheObjectOfLogicresearchisthECorcectnessOfreasoning.Tiukasti luona (moreacademical), theObjectofLogicresearchisTheValiditySformOfreasoning.
TheViewTHatTheObjectOfLogICResearchisTheValitydSForMorMoFreasoninghasbeenRecognezedBySCholarSandExperts.JälkikäsittelyTheSearchObjectOfLogic, iCanenterThequestionIWanTToTalkABout.WhatShereSearchObjectoffuzzyLogic? Täällä, IwantToDiscussFromThefowingaspects:
(1) The BackgroundoffuzzyLogic.Ihmisen tuntemus.Yksiprecisephenomena, joka on kirjoittanut.Esimerkiksi 2+2 = 4; GuiyangcitySTheCapital of Guizhoun maakunta; Moutaiischina'snationAlliquor, Andsoon.ItCanbesenthatthesephenomenaAllHaveRecisedFinitionSandProperties.Intherealworld, sensanotherfenomenononthatisdiffulttoAccuraalyDescribean jadefine.Forexample, Huaxiisabeautifulplace (whatexactlyisbeautifulscenery?).ThereAreCountlessSuchphenomena.Vastaava "tarkkuusfenomenoni" WecallitThe "fuzzyphenomenon".InorderTouserigorousscientificmethodstostodyfuzzyphenomena jaanalyzefuzzyproperties, fuzzymathematicsCameObeing.AndfuzzylogicisONOftheBranchDiciplinesDerivedfromfuzzymathematics.
(2) TheresearchObjectoffuzzyLogic.ATENTIONTIONEWLIER, TheresearchObjectOfLogicisThevalidididsFTheformOfreasoning -.SOWHATISFUZZYRACING? WHITESTHEDIFERENCEANDCONNECTIONBETWEENFUZZYRAsoningAndPreciser -mauste? Nämä ohjeet.
Ensinnäkin, Let'stakealookatwhatfuzzyreasoningis.KutenExactrasening, fuzzyreasoningisalsocomposedofOfbasiclogicalelementssuchasconceptsandJudgments, butfuzzyreasoninghasitsowniquewayofreasoning.Theconclusionsdervedbyfuzzyreasoningarenotabsolutelytrueandfalse.ITSClusionsCanonlybedescrededByMembershipDegree.Forexample, theTeacherzhanginThePreViousexampleisamiddle-appersson.ThishAveryTypicalfuzzyJudgmentsence.Täällä.Forexample, 40-vuotias keski-ikäisille ihmisille.Isittruethat41-vuotiaanaddle-agedandisregardedasfalse? Koska.Forthispowerlessongelmainbinarylogicbutcanbeeasilysolvedinfuzzylogic,weuseChadnotationtodescribethiscase.ChadNotationExpressesAllTheelementsInThefuzzySetHrughTheMoffRactions.AnditDegreeOfMembership, WherethedenominArreRePresentsTheelement ja ThenumeraRrEpresentsTheDegreeOfMembership.Intheaboveexample, wecanexpressitas (a) = (0.5/MR.Zhang), joka merkitsee.Zhangisamiddle-agePersonandly0.5IntermSofDegree.HerraPutasidetheabsoluteTruthandfalseuthe.Kuitenkin thefuzzyphenomenonhasalsobeenAccuraalyDescraded.ThereasonFortheaccuracyOfthefuzzyphenomenonismainlyforthefuzzyReasoningtoberealizedonthemachine.
Toiseksi keskustele.ChenbomadeaMoreAncisivesumaryfThevalididesOfreasoningandputForwardFiVere -tarkkailu.HebelievesthatMegeArterAceingiseffectivesHeultHeetThefollowingfivEconditionSatthesametime: (1) uskollisuus.(2) ContentRelevance.(3) itsenäisyys.(4) AiheNeutralityorUniversalAppliciability.(5) Yksinkertaisuus.Vaikka sechenboproposedsuchaframework, iTisimelimmanspsibleforykindifLogicalReasoningTometTheaboveFivekriteriatHesametimeMetime.TÄMÄNIONEXPRESSIMESIPLEVIEWSONTEEFCECTIVESTOFUZZYLOGIC.ThereingCommonlyUnedInfuzzyLogicinludesfuzzyhypoTheticiNreasoningandfuzzyconditionalreasoning.FuzzyhypoteticalReasoningisthemostrepresentative.Thedefinitionoffuzzyhypoteticierreasoningis: itisknownThatfuzzypropositio (Majorpremise) CononsionFuzzyPropositionb.Ifthereisafuzzypropositio1 (smallpremise) se, että.Wecallthisreasoningprocessfuzzyhypotheticalreasoning.Esimerkiksi:
(1) ifthefoodyoueatisrichinnitrients, sinunBudwillBegood; sienifthefoodyoueatisrichinnutrients, whatwillyourbodybelike?
(2) IFCHINAWASSSTONTONTHELATEQINGDYNASTY, ITWORDNOTBEBULIEDBYTHEIMPERIALISTCOUNTIES
DuetovaguehypothesestHelargeandsMallPremisesofreasoningarefuzzy, SiitsConclusionsarealSofUzzy.TämäScompleyDifferentFromtheaccuracyRequiredByTraditionalogic.NoowshouldfuzzyReasoningBeaccuraalyDescribedSothatitCanberecognedbyMachines? WecandiscussitFromtwoaspects: Humanexperienceandfuzzymathematics.
Theesignificanconcreatingandresearchingfuzzylogic
(1) KäyttämälläNewideasandNewtheoriessUchasfuzzylogICvariables-, fuzzylogicfunctions, andliKeliOntheBreakthroughLaidTheTheoreettfoundationdpointEDEDOutTheDirectionForthestudyoffuzzyobjectsfromthelogicalpointPointFView.
(2) fuzzylogicisUniqueintheautomaticcontrolprocessThatisdiffultOnTodescribeandprocesswiththeoriginalBooleanalgebra, binaryLogicandothermathematicsandLogictools, theediagnosisofiffultdiseases, theesearchoflarge-scalesytems, jne..Paikka.
(3) Intermethodologia, It ProvididesCorrectResearchMethodsforHumanresearchFromaccuracyToVagueness and FromcaneTouncancety.
Lisäksi matematiikan tutkimuksen mukaan fuzzylogichelpstosolvesomeparadoxes.Theestudyofdialekticallogicwillalsohaveaprofoundimpact.Tietysti, fuzzylogictheoryitelfneedstobefurthersystematisoitu, täydellinen ja standardoitu.
Kyydysamples
Ifaperson'sheightis1.8 metriä, DatchHimastall:
IFmaleIStrueANDheight>=1.8Tenis_tallistrue
IFmaleIStrueANDheight>=1.8nthenis_shortisfalse
Buttheabovefinitionisunrealistinen.Siksi alustHefuzzyrules, seisnoobViousdistLanctionBetweLenDallandshort:
IFheight>=mediummaleTHENis_shortISagreesomehow
IFheight>=mediummaleTHENis_tallISagreesomehow
IntheCaseOfblur, siinä,
kääpiöt = [0,1.3]
msmallmale = (1.3,1.5)
keskinkertainen = (1.5,1.8)
Tallmale = (1.8,2.0)
giantmale>2.0MFORTHECONCLUSSION, THEREARENOTJUSTTWOVALUES, BUTFIVE:
agsenot = 0
agselittle = 1
agsenot = 0
agselittle = 1
p>Tooleileva = 2
acgealot = 3
Hyvästi = 4
Epätabinaarinen "hauras" tilanne, theHeightpersonwhois1.79 metersMayBeconsidedshort.Jos.8Metersor2.25 metriä, theesepLearConseredtall.
Tämä FragileExampleisDeLibery DefferentFromthevagueExample.Wecan’tputInThepremise
IFmale>=agreesomehowAND...Koska GenderisoftenConsidedTobebinaryInformation.Soit'sNotasComplitedAshEight.