Salausalgoritmi
Inellipticcurveencryption(ECC),aspecialformofellipticcurveisused,thatis,anellipticcurvedefinedinafinitefield.Theequationisasfollows:
y²=x³+ax+b(modp)
Tässä onalkuluku,jakaksinegatiivisia kokonaislukuja vähemmän kuinp.Ne täyttävät:
4a³+27b²(modp)≠0jossax,y,a,b∈Fp,piste(x,y),joka täyttää kaavan(2)ja äärettömän pisteenOformanellipsikäyräE.
TheellipticcurvediscretelogarithmproblemECDLPisdefinedasfollows:GivenaprimenumberpandanellipticcurveE,forQ=kP,findapositiveintegerklessthanpwhenPandQareknown.ItcanbeprovedthatitiseasiertocalculateQwithkandP,butitismoredifficulttocalculatekfromQandP.Sofar,thereisnoeffectivemethodtosolvethisproblem.Thisistheprincipleoftheellipticcurveencryptionalgorithm.
Vertailu
VertailubetweenellipticcurvealgorithmandRSAalgorithm
EllipticcurvepublickeysystemisastrongcompetitortoreplaceRSA.ComparedwiththeRSAmethod,theellipticcurveencryptionmethodhasthefollowingadvantages:(1)Highersecurityperformance.Forexample,160-bitECChasthesamesecuritystrengthas1024-bitRSAandDSA.
(2)Theamountofcalculationissmallandtheprocessingspeedisfast.Intermsoftheprocessingspeedofprivatekeys(decryptionandsignature),ECCismuchfasterthanRSAandDSA.
(3)SmallstoragespaceoccupiedThekeysizeandsystemparametersofECCaremuchsmallerthanRSAandDSA,sothestoragespaceoccupiedismuchsmaller.
(4)ThelowbandwidthrequirementmakesECChaveawiderangeofapplicationprospects.
ThesecharacteristicsofECCmakeitsuretoreplaceRSAandbecomeageneralpublickeyencryptionalgorithm.Forexample,thecreatorsoftheSETprotocolhaveadopteditasthedefaultpublickeycryptographicalgorithminthenext-generationSETprotocol.