Elliptisen käyrän algoritmi

Salausalgoritmi

Inellipticcurveencryption(ECC),aspecialformofellipticcurveisused,thatis,anellipticcurvedefinedinafinitefield.Theequationisasfollows:

y²=x³+ax+b(modp)

Tässä onalkuluku,jakaksinegatiivisia kokonaislukuja vähemmän kuinp.Ne täyttävät:

4a³+27b²(modp)≠0jossax,y,a,b∈Fp,piste(x,y),joka täyttää kaavan(2)ja äärettömän pisteenOformanellipsikäyräE.

TheellipticcurvediscretelogarithmproblemECDLPisdefinedasfollows:GivenaprimenumberpandanellipticcurveE,forQ=kP,findapositiveintegerklessthanpwhenPandQareknown.ItcanbeprovedthatitiseasiertocalculateQwithkandP,butitismoredifficulttocalculatekfromQandP.Sofar,thereisnoeffectivemethodtosolvethisproblem.Thisistheprincipleoftheellipticcurveencryptionalgorithm.

Vertailu

VertailubetweenellipticcurvealgorithmandRSAalgorithm

EllipticcurvepublickeysystemisastrongcompetitortoreplaceRSA.ComparedwiththeRSAmethod,theellipticcurveencryptionmethodhasthefollowingadvantages:(1)Highersecurityperformance.Forexample,160-bitECChasthesamesecuritystrengthas1024-bitRSAandDSA.

(2)Theamountofcalculationissmallandtheprocessingspeedisfast.Intermsoftheprocessingspeedofprivatekeys(decryptionandsignature),ECCismuchfasterthanRSAandDSA.

(3)SmallstoragespaceoccupiedThekeysizeandsystemparametersofECCaremuchsmallerthanRSAandDSA,sothestoragespaceoccupiedismuchsmaller.

(4)ThelowbandwidthrequirementmakesECChaveawiderangeofapplicationprospects.

ThesecharacteristicsofECCmakeitsuretoreplaceRSAandbecomeageneralpublickeyencryptionalgorithm.Forexample,thecreatorsoftheSETprotocolhaveadopteditasthedefaultpublickeycryptographicalgorithminthenext-generationSETprotocol.

Related Articles
TOP