Ohjattu kaavio

Aiheeseen liittyvät konseptit

Isolatedpoint:ThepointinVthatisnotassociatedwithanyedgeinEiscalledtheisolatedpointofD.

Simplegraph:Agraphwithoutparalleledgesiscalledasimplegraph.

Completegraph:BetweenanytwoverticesUanduinthegraph,thereareexactlytwodirectededges(u,v),and(v,u),thenCallthedirectedgraphDacompletegraph.

Basicgraph:RemoveeachedgeofthedirectedgraphDtogetacorrespondingundirectedgraphG,whichiscalledthebasicgraphofD.CallDTheDirectionalgraphofg.

Stronglyconnectedgraph:GivenadirectedgraphG=(VE),andgivenanytwonodesuandvinthegraphG,ifthenodeuItismutuallyreachablewithnodev,thatis,thereisatleastonepaththatcanstartfromnodeuandendatnodev,andthereisatleastonepaththatcanstartfromnodevandendatnodeu,thenitissaidthatthereshouldbeThedigraphGisastronglyconnectedgraph.

Weaklyconnectedgraph:Ifatleastonepairofnodesdoesnotsatisfyone-wayconnectivity,butafterremovingtheedgedirection,itisaconnectedgraphfromthepointofviewofanundirectedgraph,thenDiscalledItisaweaklyconnectedgraph.

One-wayconnectedgraph:Ifeachpairofnodesisconnectedinatleastonedirection,thenDiscalledaone-wayconnectedgraph.

Stronglyconnectedcomponent:TheextremelystronglyconnectedsubgraphofthedirectedgraphGiscalledthestronglyconnectedcomponentofthedirectedgraph.

Directedpath:Thereisalwayssuchanindependentset5inacyclicdirectedgraphD,sothatanypointiny-Js",thereexistsH∈S,fromMto"Thereisadirectedpathwithalengthnotexceeding2.

Vierekkäinen matriisi

Lukuun ottamatta Forisolatevertices, mikä tahansa.Siksi AnyDirectedGraph, riippumatta siitä,.Esimerkiksi, jos Daren reunat seuraavasti:

(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3, 4), (4,4),

MotThatwelistTheedgesofDaccordingTotedictionarySekvenssi, Buthereisnota, B, C, C, C, C, C,..., but1,2,3....

Mukana,.TämäSteDiredgraphadjacencyMatrix.

Ratkaisu

ForthSesortestPathProblemofAdirectedGraph, The EcalculationStepsarethesameasSolvingthShortestPathProblemOfanDirectedGraph.ThraindifferenceishattheshortestPathproblemofanundirectedgraphusesasingLelAbelingMethod.Thesingle-labelingmethodistoassignaright of waylabeltoeachpoin.Thedoublelabelingmethodistoassigntwolabelstoeachpoint: thepathandtherightofway.

Saavutettavuus

Foranundirectedgraph, ifitisconnected, thentheremustbeapathbetbetweenytwoverticesofit.Siksi tämän kautta tämän läpi.Ifthevertex "canreachu, niin sitoa.

Fordirectedgraphs, theesiticationisdifferent, becausethereisapathfromutov, joka ei.

OleteDiredirectedGraph, andu, v∈D, jos seisApathFromverTexuverTexv, sittenTiSAIDToTverTexvToverTexuisReachable.

TheconceptOfreachbilityHasnothingTodowithTheNumberandlengthOftHeVariousPathsFromutov.Lisäksi FortSakeOfcleteness, itSSTIPOULTTHATANYVERTEXTOIFSSS ISREACHEAVA.

EsteettömyysRelationshipbetwevenheverTicesOfiredgedGraph.Mukana, ITISREFLEXIVEAndTransiitiivien mukaan.Yleisesti ottaminen, saavutettavuus.

Related Articles
TOP