Sisältävät suhteita

Johdanto

Määritelmä

sisältyy aineistoluokkien ja aineistoluokkien välisenä alisteisena suhteena, jota kutsutaan myös osajoukkosuhteiksi. Perusmerkitys on samalla tavalla, inkluusio, hautominen ja suhdeadjektiivit. Han · Guanxi "Salt Tribody · Vigorine": "Kuningas sisältää rinnakkain, rakkaus on epäitsekästä, ei lähelle tutkijoille, ei kauaskantoinen."

Luokitus

(1) sisältyy (mukaan lukien)

(2) todellinen inkluusio (true inclusive)

ominaisuudet

(1) Siirrettävyys: Jos joukko A sisältyy joukkoon B, joukko B sisältyy kokoelmaan C, niin joukko A sisältyy kokoelmaan C.

(2) Luonto: Kokoelma A sisältyy kokoelmaan B, sitten sarja A on kokoelmassa B, kuuluu B:lle.

Todennäköisyysarvo

Johdanto

itse asiassa kohtaa monia tapahtumia satunnaisessa ilmiössä, ja niiden välillä on kolme yhteyttä.

(1) sisältää:

Satunnaisessa ilmiössä on kaksi tapahtumaa A ja B. Jos jonkin tapahtuman A näytepisteistä on oltava B:ssä, A sisältyy B:hen tai B sisältää A:n, joka on "a, joka sisältyy B:hen": A⊂B tai "B sisältää A:n": B⊃A, At tällä kertaa tapahtuman A esiintymisen täytyy aiheuttaa tapahtuma B. Kuten oikealla näkyy. Kuten nopan heittäminen, tapahtuman a = "4 pistettä" täytyy aiheuttaa tapahtuma B = "Poistuttava piste", joten A⊂B.

(2) Keskinäinen yhteensopimattomuus:

Satunnaisessa ilmiössä on kaksi tapahtumaa A ja B. Jos tapahtumat A eivät ole sama näytepiste, tapahtumat A ja B eivät ole yhteensopivia. Tällä hetkellä tapahtumat A ja B eivät voi tapahtua samanaikaisesti. Kuten kuvasta 1 näkyy, kuten "TV:n käyttöikä on alle 10 000 tuntia" TV:n käyttöikätestissä, "TV:n käyttöikä on yli 40 000 tuntia" on kaksi keskenään ristiriitaista tapahtumaa, koska niillä ei ole näytepisteitä? Tai sano, että ne eivät voi tapahtua samanaikaisesti.

Kahden tapahtuman välinen yhteensopimattomuus voidaan laajentaa kolmeen tai useampaan tapahtumaan. Esimerkiksi, kun tarkastetaan kolmea tuotetta, C1 = "vain ehdoton tuote", C2 = "On kaksi ehdotonta tuotetta", C3 = "kaikki ehdottamattomat tuotteet", c0 = "Ei ole ei-kelpoista tuotetta" Neljä keskenään yhteensopimatonta tapahtumaa.

(3) Yhtä:

Satunnaisessa ilmiössä on kaksi tapahtumaa A ja B. Jos tapahtumat A ja B sisältävät saman näytepisteen, tapahtumat A on yhtä kuin B, ja se kirjataan muodossa A = B. Kahden nopan satunnaisilmiössä sen näytepisteet ovat (x, y), missä x ja y ovat pisteiden määrä, jotka näkyvät ensimmäisessä ja toisessa nopan, ja seuraavat kaksi tapahtumaa: a = {(x, Y): x + y = pariton luku}, b = {(x, y): X ja Y ' s pariteettiero}, voi varmistaa, että A ja B sisältävät saman näytepisteen, joten A = B.

Esimerkkejä

Elementtejä ja kokoelmia kutsutaan "kuuluviksi", eikä niitä voida sisällyttää, mukaan lukien vain kokoelma ja kokoelma.

Esimerkki A = {1, 2}, b = {1, 2, 3}

1 ∈ A, 2∈A, 3∈B

Kuuluu elementtien ja kokoelmien väliseen suhteeseen, esim. elementti A kuuluu kokoelmaan A, tallentaa ∈A

, joka kuuluu symboliin: ∈, käytetään elementtien ja kokoelmien välissä

Kokoelman ja kokoelman välistä sisällytystä kutsutaan nimellä

jos jokin joukon A alkioista on joukon B alkio, niin joukkoa A kutsutaan joukon B osajoukoksi, joka kirjataan B tai B sisältämänä. A

tyhjä joukko sisältyy mihin tahansa joukkoon, toisin sanoen minkä tahansa joukon osajoukkoon

Jos joukon A elementit ovat kokoelman B osajoukko, vähintään yksi Elementit eivät ole A, niin kokoelmaa A kutsutaan kokoelman B todelliseksi osajoukoksi, jota kutsutaan todelliseksi osajoukoksi B tai B true sisältää A:n.

Related Articles
TOP