Perustiedot
Johdanto
Ei-metalliset merkintäkoneet,kiinteät lasermerkintäkoneet ja kaasulasermerkintäkoneet (CO2laserleikkauskone)onkevytkevyt,johdantaputkenjohtimenvaloon. sitten laserpäähän asennettu tarkennuslinssi kokoaa valon yhdeksi pisteeksi., Ja tämä piste voi saavuttaa korkean lämpötilan, joten materiaali sublimoituu välittömästi kaasuksi,joka imeytyy poispoistotuulettimesta, jotta saavutetaan leikkaustarkoitus; kutsutaan CO2laserleikkauskoneeksi.
Ceramicsubstrateprocessingapplication
Inordertodividetheceramicsubstrateintoindependentparts,alasermarkingmachinecanbeusedtomark(drill)aseriesofpartial(unpassed)hightoleranceholes.Theseholesareapproximatelyone-thirdofthedepthofthesubstrate,generatingpreferentialfaultlinesforlaterrupture.Usingothertechniques,itisalsopossibletoprocessvias,slots,anddeterminetopographyandfinepatternsonthesubstrate.
Yleisesti käytetyn keramiikan absorptio-ominaisuuksien vuoksi CO2-lasereista on tullut valinnanvaraa.Pulsoidun CO2-lasersäteilyn energiaabsorboituu ly75-300m,paksuudesta riippuen),Gauss-säteen energiaprofiilin matalaenergiareunan alla,koska lämpövaikutusalue (HAZ) paikallisen sulamisen aiheuttama.
Formanyyears,CO2laserswillconsumealotofresourcesintermsofgasandenergywhenworkinginlongshifts,andrequireamaintenanceplan.Inaddition,thepulseparameterstypicallyusedinthisapplicationmeanthatthesealedtubeCO2lasertechnologyisnotsuitable.Onthewhole,afteryearsofextensiveimprovements,CO2lasersarestillbehindothertechnologiesintermsofreliabilityandmaintenanceissues.Duringmaintenance,thebeamqualityoftheselasersisstilleasytochange;thesmallestspotsizethatcanbeachievedisalsosusceptibletolongwaves.Individually,thelaserbeamabsorptioncharacteristicsofceramicshaveallowedthistechnologytoinfluencethismarketforalongtime.
Newscribingtechnology
PreviousattemptstoapplyNd:YAGlaserstothescribingprocesswereunsuccessfulbecausetheabsorptionof1.064μmwastooweak;therewasnotenoughenergydepositedonthesurfacelayertoproduceThedesiredeffect.Tothisend,SynchronLaserService(locatedinSouthLyon,Michigan,USA)hasdevelopedsurfacetreatmenttechnologytoenhancetheabsorptionoflaserlightbyceramicsinashorterwavelengthrange.Thisprocessquicklyandslightlydipsintotheceramicsurfaceandintensifiesthedepositionenergyofthenear-infraredlaserpulseatashortenoughdistancetoproducethenecessarymeltingandvaporization.Combiningthispatent-pendingsurfacetreatmenttechnologywiththefiberlasertechnologyofSPILasers(locatedinSouthampton,UK),theprocessperformanceachievedfarexceedstheprocessperformancethatcanbeachievedbyusingaCO2lasermarkingmachine.
Surfacetreatmentgreatlyenhancesthefiberlaserbeamintotheceramictopsurfacetostartthedrillingprocess.Theenhancedpoweroftheinteractionbetweenthelaserpulseandthesurfaceofthematerial,combinedwithacustomizedhigh-resolutionbeamdeliverysystemthatensuresconsistentspotsizeonthesurface,meansthatsmallertopographycanbeachievedontheceramicsubstrate.Synchronalsoconsideredsomeotherexistinglasertechnologies,hopingtobeabletoprocessevenfinerscribing;buttheconclusionisthatnotechnologycanachievethetargetspeedinitsownuniqueway,insomecasesatleast10timesslower.
ComparedwithCO2lasers,fiberlasersshowbetterconsistencyandreliability,andcanprocessfinertopography,includingthreetimestheedgequalityafterfractureabove.Figure5furthershowstheedgequalitythatcanbeachieved.Herewedescribetheoriginaledgecreatedbycuttingthearrowshape.Importantly,thenewprocesscanevenachieveproductionspeedsthatcannotbeachievedwithCO2lasers.
Ona0.0150inchthickaluminumoxidesubstrate,thescribingspeedexceeds1300inchesperminute,whichisabouttwicethatofaCO2laser(both30%deep);butthemachiningspeedisatleasttheaveragevalue.Inmostcases,thespeedexceedsthatofCO2lasers.AccordingtoSynchron,theuseofmobilecontrolsystemsinsteadoflasershasledtolimitedproduction.
Aluminumoxideandaluminumnitrideceramicscanbeprocessedinthisup-to-dateway.Whenaluminaisused,theprocesslimitisuptoasubstratethicknessofabout0.060inches,althoughthickermaterialsforharsherapplicationsarerequiredforlongerperiodsoftime.Thickersubstratescanalsoprovidemoreheatdissipation,forexampleinhigh-brightnessLEDapplications.
Aluminumnitrideceramicsaregenerallymoredifficulttoprocessthanaluminabecauseofbetterthermalconductivity,soprocessingrequiresproportionallygreaterpower.Ontheotherhand,afinermorphologycanbeachieved,becauseonlythehighestdensitypartofthebeamcanproducetherequiredprocess,andthehighthermalconductivityofthematerialminimizestheHAZonbothsidesofthebeamenergyprofile.Theinitialresultsofusingthisnewmethodareexcellent,andtheprocessusingthismaterialcanstillbefine-tuned.
Processimprovement
Fiberlaserscanprovideaseriesofuniquepropertiesandareusedinawiderangeofmaterialprocessing.Forexample,areliableGaussianbeamprofile(TEM00)isimportantforachievingandmaintainingaconsistentspotsizeonthesurface.Fiberlasersperformwellinthisrespect,andalloutputpowersexhibitaparticularlyhigh-qualitybeamdistribution,thusallowinglargeworkingdistances(independent).Anotheradvantageisthatthesmallspotsizeandthehigh-qualitylightbeamareconvertedintothehigh-brightnesslightofthefocalpoint,whichrealizesreliableprocessing,highaccuracy,andminimumHAZ.
Fiberlaserscanjointlyachievethegreatestreductioninoperatingcoststhroughthefollowingseveralways:reducedmaintenancecosts,noalignmentorcalibrationrequirements,longeruptime,andimprovedproductionqualityathigheryields.Fiberlasersarecompactanddurable,sotheyaresuitableforthemostchallengingindustrialenvironments.
Synchron'sproprietarytechnologyhasbrokenthroughanewfieldoftechnologicalprogressintheindustry,thatis,itcannotmatchtheprocessingofothermaterialsintheproductionofconsumerelectronicproducts.Therearerelativelyfewindustrygiants.Ontheonehand,thecostofcompetitionishigh,andontheotherhand,itisnecessarytomaintainflexibilityandchangeincustomerdemand.Facedwiththissituation,anytechnologicaladvancementmayleadtowinningimportantmarkets.
Thereducedprofilesizeachievedbythecombinationoffiberlaserandproprietarysurfacemodificationtechnologyopensthedoorforfinerscribingofelectronicproduct-gradeceramicprocessing.Themonthlyoutputusuallyexceeds10millionpieces,whichcaneasilymeetthehoneycombtype.Telephonesandmusicplayers,aswellashigh-densityLEDsforbacklightingandautomotiveapplications,requiretheproductionoflarge-scaleconsumerelectronicsproducts.Infact,someindustriesarerequiringceramicsubstrateholes<0.003inches,andtheaccuracyisbetterthan0.0005inches.ItisnoteasytoachievethisresolutionwithCO2lasermarkingmachines,butSynchron’snewmethodhasbeenThislevelisreachedinmassproduction.
Surfacetreatmentcanbesprayed,dippedorrolled,anddoesnotrequirealotofdryingtime.Theapplicationofceramicsurfacetreatmentdoesnotincreaseotherprocesssteps,becausesometypesofcoatingsteps(usuallyanti-spatterlayers)aremorecommonfortheestablishedCO2processingtechnology.Inaddition,theresiduesproducedbythenewprocessarelessactiveandinsmallerquantities,whichwillonlyeliminatetheproblemofsplashing.
Processingthefinermorphologyofceramicsubstratesathigherspeedsbringsadvantagestotheelectronicsindustryintermsofdesign,performanceandcost.Fiberlaserscanhelpachieveabetterbalanceamongtheimportantcriteriarequiredbyviablecompetition:usuallyeffectiveopticalperformance,processflexibility,highoutput,long-termsystemoperation,andreliability.InthecaseofSynchron,fiberlasershelptoensurealevelofceramicprocessingperformancethatcouldnotbeachievedbefore
Muut
Teolliset sovellukset
Maailman ensimmäinen CO2Laserleikkauskoneuusinsyntyi 1970-luvulla.Jo yli 30 vuotta,johtuen sovellusalan jatkuvastalaajentumisesta. 2laserleikkauskonemarkkinoiden tarpeiden täyttämiseksi.Kaksi -dimensionalflatcuttingmachine,tree-dimensionalspacecurvecuttingmachine,pipecuttingmachine,etne 325,jossa yhteensä1,174 miljardia Yhdysvaltain dollaria..Vaikka laserleikkauksen kehitystrendi on suhteellisen nopea, sovellustaso on huomattavasti jäljessä kehittyneisiin maihin verrattuna.Vuodesta 2003 lähtien CO:n kokonaismäärä2 Maassani teollisessa tuotannossa käytetyt laserleikkausjärjestelmätonnoin 500, mikä on noin 1,5% maailman käyttöjärjestelmien kokonaismäärästä.
Esimerkki CO2-laserleikkausprosessiparametreista ei-metallisille materiaaleille | |||||
Materiaali | Paksuus/mm | Leikkausnopeus/(cm/min) | Apukaasunpaine/Mpa | Leikkausleveys/mm | |
0,25 | Pleksilasi | > 10 | > 80 | > N2 | > 0,7 |
Polyesterihuopa | > 10 | > 260 | > N2 | > 0,5 | |
Kangas (monikerroksinen) | > 15 | > 90 | > N2 | > 0,5 | |
Pahvi | > 0,5 | > 300 | > N2 | > 0.4 | |
> 2.6 | > 300 | > N2 | > 0,5 | ||
Kvartsilasi | > 1.9 | > 60 | 0,2 | ||
Polypropeenilevy | > 5.5 | > 70 | > N2 | > 0,5 | |
Polystyreenilevy | > 3.2 | > 420 | > N2 | > 0.4 | |
0.5 | > PVC-levy | > 4 | > 170 | Ilma,0,15 | —— |
pleksilasi | > 10 | > 120 | |||
Viisikerroksinen liimalevy | > 5 | > 210 | |||
1.0 | > Kuitulevy | > 15.6 | > 450 | N2 | —— |
Monikerroksinen vaneri | > 6.2 | > 900 | |||
PVClaminaatti | > 3.1 | > 1050 | |||
Sahanpurulauta | > 3.9 | > 1800 | |||
3.1 | > 2250 | ||||
akryyliamidilevy | > 2.8 | > 3390 | |||
> 3.2 | > 2970 | ||||
> 3.5 | > 2720 | ||||
0,05 | > akryyli | > 2.0 | > 100 | —— | —— |
Keinonahka | > 0,8 | > 250 | |||
0.3 | kipsilevy | > 9.0 | > 50 | —— | —— |
vaneri | > 10.0 | > 110 | |||
Lämpöä estävä lasi | > 2.2 | > 50 | |||
Kumiarkki | > 5 | > 50 | |||
Nahkaa | > 4 | > 220 | |||
Kemiallinen kuitukangas | > 6.5 | > 220 | |||
> 0,75 | > 1200 |
Tekniset parametrit
LasertypeCO2suledlasstubelaser
Työtasoindeksointialusta
p>Enintään yhden näytön kaiverrusmuoto 250 mm × 250 mm–450 mm × 450 mm
Motionsystem offline-tai online-liikkeenhallinta, 5 tuuman LCD-näyttö
Virtalähde 220V±10%50Hz
Tue grafiikkamuotoja AI, BMP, PLT, DXF, DST jne.
Vakio500W-savunimuri
Valinnainenerikoisautomaattinen syöttölaite,kylmävesikone (ei varustettu ilmajäähdytyksellä)
Applicableindustries
SuitableforCO2lasercuttingmachinesmainlyincludespecialpartsthatrequireuniformcutting,advertisements,decorations,etc.Stainlesssteelwithathicknessofnotmorethanthreemillimetersandnon-metallicmaterialswithathicknessofnotmorethan20millimetersusedintheserviceindustry,andOneistoprocessworkpieceswithcomplexcuttingcontoursbutasmallamounttosavethecostandcycleofmanufacturingmolds.