Laser welding technology

Basicinformation

Exciteelectronsormoleculestogenerateconcentratedandphase-identicallightbeamsduringtheconversionintoenergy.LasercomesfromthefirstletterofLightAmplificationbyStimulatedEmissionRadiation.composition.

Itiscomposedofanopticaloscillatorandamediumplacedbetweenthemirrorsatbothendsofthecavityoftheoscillator.Whenthemediumisexcitedtoahigh-energystate,itstartstogeneratelightwavesofthesamephaseandreflectbackandforthbetweenthemirrorsatbothends,formingaphotoelectricstringjunctioneffect,amplifyingthelightwaves,andobtainingsufficientenergytostartemittinglaserlight.Lasercanalsobeinterpretedasadevicethatconvertsprimitiveenergysuchaselectricenergy,chemicalenergy,heat,lightornuclearenergyintocertainspecificlightfrequencies(electromagneticradiationbeamsofultravioletlight,visiblelightorinfraredlight.)TheconversionformisinsomeItiseasytocarryoutinsolid,liquidorgaseousmedia.Whenthesemediaareexcitedintheformofatomsormolecules,theyproducelightbeamswithalmostthesamephaseandnearlyasinglewavelength—laser.Becauseofthesamephaseandsinglewavelength,thedifferenceangleisverysmall,andthedistancethatcanbetransmittedisquitelongbeforebeinghighlyconcentratedtoprovidefunctionssuchaswelding,cutting,andheattreatment.

Thefirstlaserbeamintheworldwasproducedbyusingaflashbulbtoexciteruby​​crystalgrainsin1960.Duetothethermalcapacityofthecrystal,itcanonlyproduceaveryshortpulsebeamwithaverylowfrequency.Althoughtheinstantaneouspulsepeakenergycanbeashighas10^6watts,itisstillalowenergyoutput.Theuseofneodymium(ND)astheexcitationelementofyttriumaluminumgarnetcrystalrods(Nd:YAG)canproduceacontinuoussingle-wavelengthbeamof1-8KW.YAGlaser,withawavelengthof1.06uM,canbeconnectedtothelaserprocessingheadthroughaflexibleopticalfiber,theequipmentlayoutisflexible,andthesuitableweldingthicknessis0.5-6mm.UsingCO2laser(wavelength10.6uM)withCO2astheexciter,theoutputenergycanreach25KW,anditcanmake2mmplatethicknesssinglepassfullpenetrationwelding.Ithasbeenwidelyusedintheindustryformetalprocessing.

Mostoftheearlylaserweldingresearchexperimentsusedruby​​pulsedlasers.Althoughhigherpulseenergycouldbeobtainedatthattime,theaverageoutputpoweroftheselaserswasquitelow,whichwasmainlycausedbytheverylowworkofthelasers.Determinedbytheefficiencyandtheexcitabilityoftheluminescentmaterial.LaserweldingmainlyusesCO2lasersandYAGlasers.YAGlasershavebecomethepreferredequipmentforlaserspotweldingandlaserseamweldingbecauseoftheirhighaveragepower.Thesignificantdifferencebetweenlaserweldingandelectronbeamweldingisthatlaserradiationcannotproduceperforationwelding.Infact,whenthelaserpulseenergydensityreaches10tothe6thpowerW/CM2,aweldholewillbeformedontheweldinginterfaceoftheweldedmetalmaterial,andtheformationconditionsofthesmallholewillbemet,sothatthelaserbeamcanbeusedfordeepening.Fusionwelding.

Beforethe1970s,becausehigh-powercontinuouswaveformlasershadnotyetbeendeveloped,researchfocusedonpulsedlaserwelding.Mostearlylaserweldingresearchexperimentsusedruby​​pulsedlasers.TheweldingprocessofYAGlasersiscarriedoutbyweldingjoints.Afterthebirthofcontinuouspowerwaveformlasersabove1KW,thereallaserseamweldingcanberealized.

Withthesuccessofthekilowatt-levelcontinuousCO2laserweldingtest,laserweldingtechnologymadeabreakthroughintheearly1970s.CO2laserweldingwascarriedoutonalargethicknessstainlesssteelspecimen,andapenetrationweldwasformed,whichclearlymarkedtheformationofsmallholes,andthedeeppenetrationweldproducedbylaserweldingwassimilartoelectronbeamwelding.TheseearlyworkusingCO2lasersformetalweldingprovedthegreatpotentialofhigh-powercontinuouslaserwelding.Intheaerospaceindustryandmanyotherapplications,laserweldingcanrealizetheconnectionofmanytypesofmaterials,andlaserweldingusuallyhasmanyadvantagesthatotherfusionweldingprocessescannotmatch,especiallylaserweldingcanconnectthemoredifficulttoweldintheaviationandautomotiveindustriesThin-platealloymaterials,suchasaluminumalloy,etc.,andthedeformationofthecomponentsissmall,andthejointqualityishigh.Anotherattractiveapplicationoflaserprocessingistheuseoflaserstoachievelocalandsmall-scaleheatingcharacteristics.Thishotspotoflasersmakesthemverysuitableforweldingelectronicdevicessuchasprintedcircuitboards.Laserscanbeusedinelectronicdevices.Averysmallareaonthedeviceproducesahighaveragetemperature,whiletheareaoutsidethejointisbasicallyunaffected.

Itbelongstofusionwelding,whichuseslaserbeamasenergysourcetoimpactontheweldmentjoint.Thelaserbeamcanbeguidedbyaflatopticalelement(suchasamirror),andthenareflectivefocusingelementorlensisusedtoprojectthebeamontheweld.Laserweldingisnon-contactwelding.Nopressureisrequiredduringtheoperation,butinertgasisrequiredtopreventoxidationofthemoltenpool.Fillermetalisoccasionallyused.LaserweldingcanbecombinedwithMIGweldingtoformlaser-MIGhybridweldingtoachievelargepenetrationwelding,andatthesametime,theheatinputisgreatlyreducedcomparedwithMIGwelding.

Featuresoflaserwelding

Firstofall,laserweldingcanreducetheamountofheatinputtotheminimum,themetallographicchangerangeoftheheat-affectedzoneissmall,andthedeformationcausedbyheatconductionisalsolowest.Thereisnoneedtouseelectrodes,andthereisnoconcernaboutelectrodecontaminationordamage.Andbecauseitisnotacontactweldingprocess,thewearanddeformationoftheequipmentcanbeminimized.Thelaserbeamiseasytofocus,alignandbeguidedbyopticalinstruments.Itcanbeplacedatanappropriatedistancefromtheworkpiece,andcanbeguidedbetweentoolsorobstaclesaroundtheworkpiece.Otherweldingmethodscannotbeusedduetotheabove-mentionedspacelimitations..Secondly,theworkpiececanbeplacedinaclosedspace(vacuumedortheinternalgasenvironmentisundercontrol).Thelaserbeamcanbefocusedonasmallarea,canweldsmallandcloselyspacedparts,canweldawiderangeofmaterials,andcanalsojoinvariousheterogeneousmaterials.Inaddition,itiseasytoautomatehigh-speedwelding,anditcanalsobecontrolledbydigitalorcomputer.Whenweldingthinmaterialsorthin-diameterwires,itisnotaseasytobetroubledasarcwelding.

Advantagesoflaserwelding

(1)Theheatinputcanbereducedtotheminimumrequiredamount,themetallographicchangerangeoftheheat-affectedzoneissmall,andthedeformationcausedbyheatconductionisalsothelowest.

(2)Theweldingprocessparametersof32mmplatethicknesssinglepassweldinghavebeenverifiedandqualified,whichcanreducethetimerequiredforthickplateweldingandevensavetheuseoffillermetal.

(3)Thereisnoneedtouseelectrodes,andthereisnoconcernaboutelectrodecontaminationordamage.Andbecauseitisnotacontactweldingprocess,thewearanddeformationoftheequipmentcanbeminimized.

(4)Thelaserbeamiseasytofocus,alignandbeguidedbyopticalinstruments,canbeplacedatanappropriatedistancefromtheworkpiece,andcanbere-guidedbetweentoolsorobstaclesaroundtheworkpiece,otherweldingThelawcannotbeexertedduetotheabove-mentionedspaceconstraints.

(5)Theworkpiececanbeplacedinaclosedspace(undervacuumorinternalgasenvironmentundercontrol).

(6)Thelaserbeamcanbefocusedonasmallareaandcanweldsmallandcloselyspacedparts.

(7)Therangeofweldablematerialsiswide,andtheycanalsobejoinedtoeachother.Allkindsofheterogeneousmaterials.

(8)Itiseasytoautomatehigh-speedwelding,anditcanalsobecontrolledbydigitalorcomputer.

(9)Whenweldingthinmaterialsorthin-diameterwires,itwillnotbeaseasytobetroublesomeasarcwelding.

(10)Itisnotaffectedbythemagneticfield(arcweldingandelectronbeamweldingareeasy),andcanaccuratelyaligntheweldment.

(11)Twometalswithdifferentphysicalproperties(suchasdifferentresistances)canbewelded

(12)NovacuumorX-rayprotectionisrequired.

(13)Withperforationwelding,thedepth-to-widthratiooftheweldbeadcanreach10:1

(14)Thedevicecanbeswitchedtotransmitthelaserbeamtomultipleworkstations.

Processparameters

ProcessparametersofcontinuousCO2laserwelding

p>p>

Thickness/mm

Weldingspeed/(cm/s)

Seamwidth/mm

Aspectratio

Power/kw

Buttweld

321stainlesssteel(1Cr18Ni9Ti)

0.13

3.81

0.45

Fullpenetration

5

0.25

1.48

0.71

Fullpenetration

5

0.42

0.47

0.76

Partialpenetration

55

17-7stainlesssteel(0Cr7Ni7A1)

0.13

4.65

0.45

Fullpenetration

5

302stainlesssteel(1Cr18Ni9)

0.13

2.12

0.50

Fullpenetration

5

0.20

1.27

0.50

Fullpenetration

5

0.25

0.42

1.00

Fullpenetration

5

6.35

2.14

0.80

7

3.5

8.9

1.27

1.00

3

8

12.7

0.42

1.00

5

20

20.3

21.1

1.00

5

20

6.35

8.47

——

3.5

16

InconelAlloy600

0.10

6.35

0.25

Fullpenetration

5

0.25

1.69

0.45

Fullpenetration

5

NickelAlloy200

0.13

1.48

0.45

Fullpenetration

5

td>

Monel400

0.25

td>

0.60

0.60

Fullpenetration

5

Industrialpuretitanium

0.13

5.92

0.38

Fullpenetration

5

td>

0.25

2.12

0.55

Fullpenetration

5

Mildsteel

1.19

0.32

——

0.63

0.65

Lapweld

Tin-platedsteel

0.30

0.85

0.76

Fullpenetration

5

302stainlesssteel(1Cr18Ni9)

0.40

7.45

0.76

Partialpenetration

5

0.76

1.27

0.60

Partialpenetration

5

0.25

0.60

0.60

Fullpenetration

5

FilletSeamWelding

321stainlesssteel(1Cr18Ni9Ti)

0.25

0.85

——

——

5

Terminalweld

321stainlesssteel(1Cr18Ni9Ti)

0.13

3.60

——

——

5

0.25

1.06

——

——

5

0.42

1.90

——

——

5

17-7stainlesssteel(0Cr17Ni7A1)

0.13

3.60

——

——

5

Inconel600

0.10

1.06

——

——

5

0.25

0.60

——

——

5

0.42

0.76

——

——

5

NickelAlloy200

0.18

1.06

——

——

5

Monel400

0.25

Themainprocessparametersoflaserdeeppenetrationwelding

Laserpower

Thereisalaserenergydensitythresholdinlaserwelding.Belowthisvalue,thepenetrationdepthisveryshallow.Oncethisvalueisreachedorexceeded,thepenetrationdepthwillbegreatlyincreased.Onlywhenthelaserpowerdensityontheworkpieceexceedsthethreshold(relatedtothematerial),plasmawillbegenerated,whichmarkstheprogressofstabledeeppenetrationwelding.Ifthelaserpowerislowerthanthisthreshold,onlysurfacemeltingoftheworkpieceoccurs,thatis,weldingisperformedinastablethermalconductivitytype.Whenthelaserpowerdensityisnearthecriticalconditionfortheformationofsmallholes,deeppenetrationweldingandconductionweldingalternatelybecomeanunstableweldingprocess,resultinginlargefluctuationsinpenetration.Duringlaserdeeppenetrationwelding,thelaserpowercontrolsthepenetrationdepthandweldingspeedatthesametime.Theweldingpenetrationisdirectlyrelatedtothebeampowerdensity,andisafunctionoftheincidentbeampowerandthebeamfocalspot.Generallyspeaking,foralaserbeamwithacertaindiameter,thepenetrationdepthincreasesasthebeampowerincreases.

Beamfocalspot

Beamspotsizeisoneofthemostimportantvariablesinlaserwelding,becauseitdeterminesthepowerdensity.Butforhigh-powerlasers,itsmeasurementisadifficultproblem,althoughtherearemanyindirectmeasurementtechniques.

Thediffraction-limitedspotsizeofthebeamfocuscanbecalculatedaccordingtothetheoryoflightdiffraction,butduetotheaberrationofthefocusinglens,theactualspotislargerthanthecalculatedvalue.Thesimplestactualmeasurementmethodistheisothermalprofilemethod,whichistomeasurethefocalspotandperforationdiameterafterscorchingthickpaperandpenetratingthepolypropyleneplate.Thismethodshouldbepracticedthroughmeasurementtomasterthesizeofthelaserpowerandthetimeofbeamaction.

Materialabsorptionvalue

Theabsorptionoflaserlightbyamaterialdependsonsomeimportantpropertiesofthematerial,suchasabsorptivity,reflectivity,thermalconductivity,meltingtemperature,evaporationtemperature,etc.,amongwhichthemostTheimportantthingistheabsorptionrate.

Thefactorsaffectingtheabsorptivityofthelaserbeamincludetwoaspects:thefirstistheresistivityofthematerial.Aftermeasuringtheabsorptivityofthepolishedsurfaceofthematerial,itisfoundthattheabsorptivityofthematerialisproportionaltothesquarerootoftheresistivity.,Andtheresistivitychangeswithtemperature;secondly,thesurfacestate(orsmoothness)ofthematerialhasamoreimportantinfluenceonthebeamabsorptionrate,whichhasasignificanteffectontheweldingeffect.

TheoutputwavelengthofCO2laserisusually10.6μm.Theabsorptionrateofceramics,glass,rubber,plasticsandothernon-metalsisveryhighatroomtemperature,whiletheabsorptionofmetalmaterialsisverypooratroomtemperature.,Untilthematerialmeltsandevenvaporizes,itsabsorptionincreasessharply.Themethodofusingsurfacecoatingorgeneratingoxidefilmonthesurfaceisveryeffectiveinimprovingtheabsorptionofthelightbeambythematerial.

Weldingspeed

Weldingspeedhasagreatinfluenceonpenetration.Increasingthespeedwillmakethepenetrationshallower,butifthespeedistoolow,itwillcauseexcessivemeltingofthematerialandweldpenetrationoftheworkpiece.Therefore,thereisasuitableweldingspeedrangeforacertainlaserpowerandacertainthicknessofacertainmaterial,andthemaximumpenetrationdepthcanbeobtainedatthecorrespondingspeedvalue.

Shieldinggas

Thelaserweldingprocessoftenusesinertgastoprotectthemoltenpool.Whensomematerialsarewelded,thesurfaceoxidationmaynotbeconsidered,buttheprotectionmaynotbeconsidered,butformostapplicationsGasessuchashelium,argon,andnitrogenareoftenusedforprotectiontopreventtheworkpiecefrombeingoxidizedduringtheweldingprocess.

Heliumisnoteasytoionize(highionizationenergy),whichallowsthelasertopasssmoothly,andthebeamenergyreachesthesurfaceoftheworkpiecewithouthindrance.Thisisthemosteffectiveshieldinggasusedinlaserwelding,butitismoreexpensive.

Argonischeaperanddenser,sotheprotectioneffectisbetter.However,itissusceptibletohigh-temperaturemetalplasmaionization,whichshieldspartofthebeamfromreachingtheworkpiece,reducestheeffectivelaserpowerforwelding,andalsodamagestheweldingspeedandpenetration.Thesurfaceoftheweldmentprotectedbyargonissmootherthanwhenprotectedbyhelium.

Nitrogenisthecheapestshieldinggas,butitisnotsuitableforweldingcertaintypesofstainlesssteel,mainlyduetometallurgicalproblems,suchasabsorption,whichsometimescreatesporesintheoverlaparea.

Thesecondfunctionofusingshieldinggasistoprotectthefocusinglensfrommetalvaporcontaminationandliquiddropletssplashing.Especiallyinhigh-powerlaserwelding,becausetheejectionbecomesverypowerful,itismorenecessarytoprotectthelensatthistime.

Thethirdfunctionoftheshieldinggasistodissipatetheplasmashieldingproducedbyhigh-powerlaserwelding.Themetalvaporabsorbsthelaserbeamandionizesintoaplasmacloud,andtheshieldinggasaroundthemetalvaporisalsoionizedbyheating.Ifthereistoomuchplasma,thelaserbeamisconsumedbytheplasmatosomeextent.Plasmaexistsasthesecondkindofenergyontheworkingsurface,whichmakesthepenetrationdepthbecomeshallowerandtheweldpoolsurfacebecomeswider.Increasetheelectronrecombinationratebyincreasingthethree-bodycollisionofelectronswithionsandneutralatomstoreducetheelectrondensityintheplasma.Thelightertheneutralatom,thehigherthecollisionfrequency,andthehighertherecombinationrate.Ontheotherhand,onlytheshieldinggaswithhighionizationenergywillnotincreasetheelectrondensityduetotheionizationofthegasitself.

Atomic(molecular)weightandionizationenergyofcommonlyusedgasesandmetals

Materialhelium,argon,nitrogen,aluminum,magnesium,iron

Atomic(molecular)weight44028272456

Ionizationenergy(eV)24.4615.6814.55.967.617.83

Fromthetable,thesizeoftheplasmacloudvarieswiththeprotectivegasused.HeliumisthesmallestandnitrogenSecond,thelargestwhenusingargon.Thelargertheplasmasize,theshallowerthepenetrationdepth.Thereasonforthisdifferenceisfirstlyduetothedifferenceinthedegreeofionizationofgasmolecules,andalsoduetothedifferenceinmetalvapordiffusionduetothedifferentdensityoftheprotectivegas.

Heliumhasthesmallestionizationandthesmallestdensity.Itcanquicklydriveouttherisingmetalvaporgeneratedfromthemoltenmetalpool.Therefore,usingheliumasashieldinggascansuppresstheplasmatothegreatestextent,therebyincreasingthepenetrationdepthandincreasingtheweldingspeed;becauseofitslightweight,itcanescape,anditisnoteasytocausepores.Ofcourse,judgingfromouractualweldingeffect,theeffectofargonprotectionisnotbad.

Theinfluenceofplasmacloudonpenetrationismostobviousinthelowweldingspeedarea.Whentheweldingspeedincreases,itsinfluencewillbeweakened.

Theshieldinggasisejectedthroughthenozzleopeningatacertainpressuretoreachthesurfaceoftheworkpiece.Thehydrodynamicshapeofthenozzleandthediameteroftheoutletareveryimportant.Itmustbelargeenoughtodrivethesprayedshieldinggastocovertheweldingsurface,butinordertoeffectivelyprotectthelensandpreventmetalvaporcontaminationormetalsplashfromdamagingthelens,thesizeofthenozzlemustalsobelimited.Theflowrateshouldalsobecontrolled,otherwisethelaminarflowoftheshieldinggaswillbecometurbulent,andtheatmospherewillbedrawnintothemoltenpoolandeventuallyformpores.

Inordertoimprovetheprotectioneffect,anadditionalsideblowingmethodcanbeused,thatis,theshieldinggasisdirectlyinjectedintothedeeppenetrationweldingholeatacertainanglethroughasmallerdiameternozzle.Theshieldinggasnotonlysuppressestheplasmacloudonthesurfaceoftheworkpiece,butalsoexertsaninfluenceontheformationofplasmaandsmallholesinthehole,andthepenetrationdepthisfurtherincreased,andaweldwithanidealdepthandwidthisobtained.However,thismethodrequiresprecisecontrolofthesizeanddirectionoftheairflow,otherwiseitiseasytoproduceturbulentflowanddestroythemoltenpool,makingtheweldingprocessdifficulttostabilize.

Lensfocallength

Whenwelding,focusisusuallyusedtoconvergethelaser.Generally,alenswithafocallengthof63~254mm(2.5”~10”)isused.Thefocalspotsizeisproportionaltothefocallength,theshorterthefocallength,thesmallerthespot.However,thefocallengthalsoaffectsthefocaldepth,thatis,thefocaldepthincreasessynchronouslywiththefocallength,soashortfocallengthcanincreasethepowerdensity,butbecausethefocaldepthissmall,thedistancebetweenthelensandtheworkpiecemustbeaccuratelymaintained,andthepenetrationdepthisnotlarge.Duetotheinfluenceofspatterandlasermodeduringwelding,theshortestfocaldepthusedinactualweldingismostlyfocallength126mm(5").Whentheseamislargeorthespotsizeneedstobeincreasedtoincreasetheweldseam,Choosealenswithafocallengthof254mm(10").Inthiscase,inordertoachievethedeeppenetrationpinholeeffect,ahigherlaseroutputpower(powerdensity)isrequired.

Whenthelaserpowerexceeds2kW,especiallyforthe10.6μmCO2laserbeam,duetotheuseofspecialopticalmaterialstoformtheopticalsystem,inordertoavoidtheriskofopticaldamagetothefocusinglens,thereflectivefocusingmethodisoftenused.Apolishedcoppermirrorisusedasareflector.Becauseofitseffectivecooling,itisoftenrecommendedforhigh-powerlaserbeamfocusing.

Focusposition

Whenwelding,inordertomaintainsufficientpowerdensity,thefocuspositionisveryimportant.Thechangeoftherelativepositionofthefocusandthesurfaceoftheworkpiecedirectlyaffectsthewidthanddepthoftheweld.

Inmostlaserweldingapplications,thefocalpointisusuallysetatabout1/4oftherequiredpenetrationdepthbelowthesurfaceoftheworkpiece.

Laserbeamposition

Whenlaserweldingdifferentmaterials,thelaserbeampositioncontrolsthefinalqualityoftheweld,especiallyinthecaseofbuttjointsthanlapjointsMoresensitivetothis.Forexample,whenahardenedsteelgearisweldedtoalow-carbonsteeldrum,thecorrectcontrolofthelaserbeampositionwillhelptoproduceaweldmainlycomposedoflow-carboncomponents,whichhasbettercrackresistance.Insomeapplications,thegeometryoftheweldedworkpiecerequiresthelaserbeamtobedeflectedbyanangle.Whenthedeflectionanglebetweenthebeamaxisandthejointplaneiswithin100degrees,theworkpiece'sabsorptionoflaserenergywillnotbeaffected.

Powercontrol

Thelaserpoweratthestartandendpointsoftheweldingisgraduallyincreasedanddecreased.

Duringlaserdeeppenetrationwelding,nomatterthedepthoftheweld,smallTheholephenomenonalwaysexists.Whentheweldingprocessisterminatedandthepowerswitchisturnedoff,pitswillappearattheendoftheweld.Inaddition,whenthelaserweldinglayercoverstheoriginalweld,excessiveabsorptionofthelaserbeamwilloccur,causingtheweldmenttooverheatorproducepores.

Inordertopreventtheoccurrenceoftheabovephenomenon,thepowerstartandendpointscanbeprogrammedtomakethepowerstartandendtimeadjustable,thatis,thestartpowerrisesfromzerotozeroinashortperiodoftimeusingelectronicmethods.Setthepowervalueandadjusttheweldingtime.Finally,whentheweldingisterminated,thepowerisgraduallyreducedfromthesetpowertozero.

AdvantagesandDisadvantages

(1)Thepositionoftheweldmentmustbeverypreciseandmustbewithinthefocusrangeofthelaserbeam.

(2)Whentheweldmentneedstouseajig,itmustbeensuredthatthefinalpositionoftheweldmentisalignedwiththeweldingpointthatthelaserbeamwillimpact.

(3)Themaximumweldablethicknessisrestrictedtopenetratetheworkpiecewithathicknessfarexceeding19mm,andlaserweldingisnotsuitablefortheproductionline.

(4)Formaterialswithhighreflectivityandhighthermalconductivity,suchasaluminum,copperandtheiralloys,theweldabilitywillbechangedbylaser.

(5)Whenperformingmediumtohighenergylaserbeamwelding,aplasmacontrollermustbeusedtodriveouttheionizedgasaroundthemoltenpooltoensurethereappearanceoftheweldbead.

(6)Theenergyconversionefficiencyistoolow,usuallylessthan10%.

(7)Theweldbeadsolidifiesrapidly,andtheremaybeconcernsaboutporosityandembrittlement.

(8)Theequipmentisexpensive.

Inordertoeliminateorreducethedefectsoflaserweldingandmakebetteruseofthisexcellentweldingmethod,someotherheatsourceandlaserhybridweldingprocesseshavebeenproposed,mainlylaserandarc,laserandplasmaArc,laserandinductionheatsourcehybridwelding,duallaserbeamweldingandmulti-beamlaserwelding,etc.Inaddition,variousauxiliaryprocessmeasureshavebeenproposed,suchaslaserfillerwirewelding(whichcanbesubdividedintocoldwireweldingandhotwirewelding),externalmagneticfieldassistedenhancedlaserwelding,shieldinggascontrolledmoltenpooldepthlaserwelding,andlaserassistedfrictionstirweldingWait.

(1)Powerdensity.Powerdensityisoneofthemostcriticalparametersinlaserprocessing.Withahigherpowerdensity,thesurfacelayercanbeheatedtotheboilingpointwithinamicrosecondtimerange,resultinginalargeamountofvaporization.Therefore,highpowerdensityisbeneficialformaterialremovalprocessing,suchaspunching,cutting,andengraving.Forlowerpowerdensities,ittakesseveralmillisecondsforthesurfacetemperaturetoreachtheboilingpoint.Beforethesurfacelayervaporizes,thebottomlayerreachesthemeltingpoint,whichmakesiteasytoformagoodfusionweld.Therefore,inconductivelaserwelding,thepowerdensityisintherangeof10^4~10^6W/CM^2.

(2)Laserpulsewaveform.Thelaserpulsewaveformisanimportantissueinlaserwelding,especiallyforsheetwelding.Whenahigh-intensitylaserbeamhitsthesurfaceofthematerial,60~98%ofthelaserenergywillbereflectedandlostonthemetalsurface,andthereflectivitychangeswiththesurfacetemperature.Duringalaserpulse,thereflectivityofthemetalchangesgreatly.

(3)Laserpulsewidth.Pulsewidthisoneoftheimportantparametersofpulselaserwelding.Itisnotonlyanimportantparameterdifferentfrommaterialremovalandmaterialmelting,butalsoakeyparameterthatdeterminesthecostandvolumeofprocessingequipment.

(4)Theeffectofdefocusingamountonweldingquality.Laserweldingusuallyrequiresacertaindegreeofseparation,becausethepowerdensityinthecenterofthespotatthelaserfocalpointistoohighanditiseasytoevaporateintoahole.Oneachplaneawayfromthelaserfocus,thepowerdensitydistributionisrelativelyuniform.Therearetwodefocusingmethods:positivedefocusandnegativedefocus.Ifthefocalplaneisabovetheworkpiece,itisapositivedefocus,otherwiseitisanegativedefocus.Accordingtothegeometricopticstheory,whenthedistancebetweenthepositiveandnegativedefocusplanesandtheweldingplaneisequal,thepowerdensityonthecorrespondingplanesisapproximatelythesame,buttheshapeofthemoltenpoolobtainedisactuallydifferent.Whenthedefocusisnegative,agreaterpenetrationdepthcanbeobtained,whichisrelatedtotheformationprocessofthemoltenpool.Experimentsshowthatthematerialstartstomeltwhenthelaserisheatedfor50~200us,formingliquidmetalandvaporizing,formingcitypressuresteam,whichissprayedataveryhighspeedandemitsdazzlingwhitelight.Atthesametime,thehighconcentrationofvaporcausestheliquidmetaltomovetotheedgeofthemoltenpool,formingadepressioninthecenterofthemoltenpool.Whenthedefocusisnegative,theinternalpowerdensityofthematerialishigherthanthatofthesurface,anditiseasytoformstrongermeltingandvaporization,sothatthelightenergycanbetransmittedtothedeeperpartofthematerial.Therefore,inpracticalapplications,whenthepenetrationdepthisrequiredtobelarge,thenegativedefocusisused;whenthethinmaterialiswelded,thepositivedefocusshouldbeused.

Application

Laserweldingmachinetechnologyiswidelyusedinhigh-precisionmanufacturingfieldssuchasautomobiles,ships,airplanes,high-speedrailways,etc.,whichhasbroughtsignificantimprovementstopeople’squalityoflife,andhasledThehomeapplianceindustryhasenteredtheeraofSeiko.

Especiallyafterthe42-meterseamlessweldingtechnologycreatedbyVolkswagen,whichgreatlyimprovedtheintegrityandstabilityofthebody,HaierGroup,aleadinghomeappliancecompany,grandlylaunchedthefirstwashingmachineproducedbylaserseamlessweldingtechnology.,Thehomeappliancecherishestheadvancementofscienceandtechnologyforthepeople,andadvancedlasertechnologycanbringhugechangestopeople'slives.Withthecontinuousconsolidationoftheglobalbrandstatusofwashingmachines,itsleadershipintheindustryhasbeguntobefullydemonstrated.However,withthesupportoflaserweldingmachinetechnology,itwillalsohaveadeeperreformofthehomeapplianceindustry.AccordingtoHaier'sR&Dpersonnel,mostofthemanufacturingtechnologyoftheinnertuboffullyautomaticwashingmachinesonthemarketadopts"snap-and-loop"technology.Therewillbegapsorunevennessinthejointsoftheinnertub,resultinginlowstrengthofthetubandunnecessarywearandtearontheclothes.Inordertofurtherimprovethereliabilityandrefinementoftheinnertub,Haierwashingmachinetakestheautomobileandshipbuildingindustriesasthereferencebase,andappliesthelaserseamlessweldingtechnologytothenewuniformpowerwashingmachine,avoidingthegapandunevennessoftheinnertub,andimprovingtheoverallperformance.Improvethereliabilityoftheproductwhiletakingcareoftheclothes.Duetotheincreaseinthestrengthoftheinnertub,themaximumspeedoftheuniformpowerwashingmachineduringthedehydrationprocessisalsoincreasedby25%comparedwiththeordinaryfullyautomaticwashingmachine,thedehydrationefficiencyisgreatlyimproved,andthepowerconsumptionislessandthetimeissaved.

Inaddition,Ialsolearnedthatthe"high-powerlaserweldingmachinetechnology"jointlydevelopedbytheSino-Germanshipbuildingindustryensuresthesafetyofshipsandfurtherstrengthensthehullstructure;intheaviationfield,laserseamlessWeldingtechnologyhasalsobeenwidelyusedinthemanufactureofaircraftengines.Atthesametime,thelaserseamlessweldingtechnologyofaluminumalloyfuselagecanreplacerivets,therebyreducingtheweightofthefuselageby20%;China'shigh-speedrailtrackhasalsointroducedlaserseamlesswelding.Technology,whileimprovingsafetyperformance,alsogreatlyreducesnoise,bringingpassengersaquietandcomfortableridingenvironment.

Withtheall-rounddevelopmentofscienceandtechnology,thecontinuousconsolidationandapplicationoflaserweldingmachinetechnologyhasalsoledtheglobalhomeapplianceindustryintoanewera.Thenewprocessisnotonlyanupgradeofproducts,butalsomoretechnologyDisplayandapplication.

1.ManufacturingindustryapplicationTailoredBlandLaserWeldingtechnologyhasbeenwidelyusedinforeigncarmanufacturing.Accordingtostatistics,in2000,thereweremorethan100lasertailoredweldingproductionlinesforcuttingblanksworldwide,withanannualoutputThereare70milliontailor-weldedblanksforcarcomponents,anditcontinuestogrowatarelativelyhighrate.ThedomesticallyproducedimportedmodelsPassat,Buick,Audi,etc.alsousesomecutblankstructures.JapanusesCO2laserweldinginsteadofflashbuttweldingfortheconnectionofrolledsteelcoilsinthesteelindustry.Intheresearchofultra-thinplatewelding,suchasfoilswithathicknessoflessthan100microns,theycannotbewelded,buttheyhavespecialoutputpowerwaveforms.ThesuccessofYAGlaserweldingshowsthebrightfutureoflaserwelding.JapanhasalsosuccessfullydevelopedtheuseofYAGlaserweldingforthemaintenanceofsteamgeneratorthintubesinnuclearreactorsforthefirsttimeintheworld.InChina,SuBaorongandothershavealsocarriedoutlaserweldingtechnologyforgears.

2.ThefieldofpowdermetallurgyWiththecontinuousdevelopmentofscienceandtechnology,manyindustrialtechnologieshavespecialrequirementsformaterials,andmaterialsmadebysmeltingandcastingmethodscannolongermeettheneeds.Becausepowdermetallurgymaterialshavespecialpropertiesandmanufacturingadvantages,theyarereplacingtraditionalsmeltingmaterialsincertainfieldssuchasautomobiles,airplanes,andtoolandcuttingtoolmanufacturing.Withtheincreasingdevelopmentofpowdermetallurgymaterials,thereareproblemswiththeconnectionbetweenthemandotherparts.Appearsincreasinglyprominent,sothattheapplicationofpowdermetallurgymaterialsisrestricted.Intheearly1980s,laserweldingenteredthefieldofpowdermetallurgymaterialprocessingwithitsuniqueadvantages,openingupnewprospectsfortheapplicationofpowdermetallurgymaterials,suchastheuseofbrazingmethodscommonlyusedinpowdermetallurgyLowstrength,wideheat-affectedzone,especiallyincapableofadaptingtohightemperatureandhighstrengthrequirements,causingthesoldertomeltandfalloff.Theuseoflaserweldingcanimprovetheweldingstrengthandhightemperatureresistance.

3.AutomobileindustryInthelate1980s,kilowatt-levellasersweresuccessfullyappliedtoindustrialproduction.Nowadays,laserweldingproductionlineshaveemergedfrommodernautomobilemanufacturingonalargescaleandbecomeoneoftheoutstandingachievementsofautomobilemanufacturing.EuropeanautomobilemanufacturerssuchasAudi,Mercedes-Benz,Volkswagen,andVolvoofSwedentooktheleadinadoptinglaserweldingforroof,body,sideframesandothersheetmetalweldingasearlyasthe1980s.Inthe1990s,GM,FordandChryslercompetedintheUnitedStates.Theintroductionoflaserweldingintoautomobilemanufacturing,despiteitslatestart,hasdevelopedrapidly.ItalianFiatuseslaserweldingintheweldingandassemblyofmoststeelplatecomponents.Japan'sNissan,Honda,andToyotaMotorCorporationuselaserweldingandcuttingprocessesinthemanufactureofbodypanels.High-strengthsteellaserweldingassemblypartsareduetotheirexcellentperformance.Itisusedmoreandmoreinautomobilebodymanufacturing.AccordingtothestatisticsoftheUSmetalmarket,bytheendof2002,theconsumptionoflaserweldedsteelstructureswillreach70,000tons,whichisthreetimesmorethanin1998.Accordingtothecharacteristicsoflargebatchesandhighdegreeofautomationintheautomotiveindustry,laserweldingequipmentisdevelopinginthedirectionofhigh-powerandmulti-channel.Intermsoftechnology,SandiaNationalLaboratoryoftheUnitedStatesandPrattWitneyhavejointlyconductedresearchonaddingpowdermetalandmetalwireinthelaserweldingprocess.TheInstituteofAppliedBeamTechnologyinBremen,Germanyhasconductedalotofresearchontheuseoflaserweldingofaluminumalloybodyframes.Itisbelievedthataddingfillerresiduesintheweldwillhelpeliminatehotcracks,increaseweldingspeed,andsolvetoleranceproblems.ThedevelopedproductionlinehasbeenputintoproductionattheMercedes-Benzfactory.

4.ElectronicsindustryLaserweldinghasbeenwidelyusedintheelectronicsindustry,especiallyinthemicroelectronicsindustry.Duetothesmallheat-affectedzoneoflaserwelding,theheatingconcentrationisrapidandthethermalstressislow.Therefore,itisshowinguniqueadvantagesinthepackagingofintegratedcircuitsandsemiconductordeviceshells.Inthedevelopmentofvacuumdevices,laserweldinghasalsobeenapplied,suchasmolybdenumFocusingelectrodeandstainlesssteelsupportring,fasthotcathodefilamentassembly,etc.Thethicknessoftheelasticthin-walledcorrugatedsheetinthesensororthermostatis0.05-0.1mm,whichisdifficulttosolvebytraditionalweldingmethods.TIGweldingiseasytoweldthrough,theplasmastabilityispoor,andtherearemanyinfluencingfactors.Thelaserweldingeffectisverygood,anditiswidelyused.Applications.

5.Laserweldingofbiomedicalbiologicaltissuesbeganinthe1970s.Klinketal.andJain[13]usedlaserweldingtoweldfallopiantubesandbloodvesselssuccessfullyanddemonstratedsuperiority,whichledtomoreresearchTheauthorstrytoweldvariousbiologicaltissuesandpromotetheweldingofothertissues.Theresearchonlaserweldingnerveathomeandabroadmainlyfocusesonthelaserwavelength,doseanditsfunctionrecoveryandtheselectionoflasersolder.OnthebasisofbasicresearchonlaserweldingofsmallbloodvesselsandskinThecommonbileductoftheratwaswelded.Comparedwiththetraditionalsuturemethod,laserweldinghastheadvantagesoffastanastomosis,noforeignbodyreactionduringthehealingprocess,maintainingthemechanicalpropertiesoftheweldedpart,andthegrowthoftherepairedtissueaccordingtoitsoriginalbiomechanicalproperties.Itwillbeusedinfuturebiomedicine.Getawiderrangeofapplications.

6.Otherfields.Inotherindustries,laserweldingisalsograduallyincreasing,especiallyinspecialmaterialswelding.Manydomesticresearcheshavebeencarriedout,suchaslaserweldingofBT20titaniumalloy,Hel30alloy,Li-ionbattery,etc.,GermanglassmachinerymanufacturerGlamacoCoswigandIFWJointTechnologyandMaterialsExperimentalResearchInstitutehavedevelopedanewlaserweldingtechnologyforflatglass.

Advantagesofhybridwelding

Laserhybridweldingtechnologyhassignificantadvantages.Forlasermixing,theadvantagesaremainlyreflectedintoday's:largerpenetration/largergapweldingability;bettertoughnessoftheweld,theadditionofauxiliarymaterialscanaffecttheweldlatticestructure;thebackoftheweldwithoutburn-throughThephenomenonofsagging;thescopeofapplicationiswider;withthehelpoflaserreplacementtechnology,theinvestmentisless.ForthehybridlaserMIGinertgasshieldedwelding,theadvantagesaremainlyreflectedintoday's:higherweldingspeed;largefusionweldingdepth;lessweldingheatgenerated;highweldstrength;smallweldwidth;smallweldprotrusion.Thereby,theproductionprocessofthewholesystemisstableandtheequipmentavailabilityisgood;theworkloadofweldingseampreparationandweldingseamprocessingafterweldingissmall;theweldingproductiontimeisshort,thecostislow,andtheproductionefficiencyishigh;ithasgoodopticalequipmentconfigurationperformance.

However,theinvestmentcostoflaserhybridweldinginpowerequipmentisrelativelyhigh.Withthefurtherexpansionofthemarket,thepriceofpowerequipmentwillalsodrop,andlaserhybridweldingtechnologywillbeappliedinmorefields.Atleastthelaserhybridweldingtechnologyisaverysuitableweldingprocessintheweldingofaluminumalloymaterials,andwillbecomethemainweldingproductiontoolinalongperiodoftime.

Developmentstatus

Foreignlasertechnologyandmanufacturingarerelativelydeveloped.Theyhavealreadybeguntostudyhowtoapplymodernlasertechnologytotraditionalmanufacturingasearlyasthe1980s.WesterncountriessuchastheEuropeanUnion,theUnitedStates,andJapaninAsiarelyontheirowndevelopedscientificandtechnologicalstrengthandagoodmanufacturingfoundation,underthereasonableguidanceandfinancialsupportofthegovernment,thedevelopmentoflaserweldingtechnologyisveryrapid,especiallyafterenteringthenewcentury.Theapplicationoflaserweldingtechnologycanbeseeninmanymanufacturingandotherindustries,includingtheelectronicsindustry,shipbuildingindustry,automobileindustry,etc.,andtheapplicationofmodernlaserweldingtechnologycanbeseen.Andtheindustrystandardofweldingtechnologyhasbeenpreliminarilyformed,sothatitcanbeappliedinareasonableandcontrollablerange.Atthesametime,inordertofurtherimproveweldingefficiencyandenablelaserweldingtechnologytobebetterappliedtomodernlarge-scaleproduction,especiallylarge-scalemanufacturingandconstructionindustries,Westerndevelopedcountrieshavebeenactivelystudyinghowtoimprovetheefficiencyoflaserweldinginrecentyears.Theresearchofpowerlasersfurtherpromotesandrealizestherealizationofhigh-powerlaserweldingtechnology,thustrulyapplyingittolarge-scalemanufacturing,construction,andevenmilitaryfieldsforthemanufacturingofsubmarinesandwarships.

In2016,theHarbinWeldingResearchInstitutewastheleaderinlaserweldingtechnologyresearchinChina.Inrecentyears,inadditiontofurtherbroadeninganddevelopingnewtypesoflaserweldingandequipment,itisalsoactivelyimitatingandreferringtothelatesttrendsinforeignresearch,andconstantlyseekingbreakthroughsanddevelopmentsinhigh-powerlaserweldingtechnology.Thelatestresearchresultsshowthattheysuccessfullyovercometheweldingproblemsofdomesticlarge-scalecomponents,whichundoubtedlymarksamajorbreakthroughinthefieldoflaserweldingtechnologyinmycountry,andalsolaysthefoundationformajorapplicationsinlarge-scaleprojectsinthefuture.Inaddition,thedomesticlaserweldingtechnologyresearchin2016wasalsoconcentratedinthefieldsoflaserhotwirewelding,dissimilarmetalwelding,etc.,whicharethelatesttopicsofmodernlaserweldingtechnologyresearch.Andforeigncountrieshavemadebreakthroughsinrelatedresearchfields,especiallyGermanyhasinitiallymasteredthetechniquesandmethodsofdissimilarmetalwelding.Inthefuture,ourcountrymustbetrulyproficientintheapplicationandmasteryoflaserweldingtechnology,andapplyittomorefieldsandIntheindustry,itisundoubtedlynecessarytoovercometheabove-mentionedissuesandtofurtherimproveandoptimizethelaserweldingtechnology.

Prospects

Laserweldingisacombinationofmoderntechnologyandtraditionaltechnology.Comparedwithtraditionalweldingtechnology,laserweldingisespeciallyuniqueanditsapplicationfieldsandapplicationlevelsaremoreextensive.,Cangreatlyimprovetheefficiencyandaccuracyofwelding.Itshighpowerdensityandfastenergyreleasecanbetterimproveworkefficiency.Atthesametime,itsownfocuspointissmaller,whichundoubtedlymakestheadhesionbetweenstitchedmaterialsbetter,andwillnotcausematerialdamageanddeformation.Theemergenceoflaserweldingtechnologyhasrealizedthefieldsthattraditionalweldingtechnologycannotapply.Itcansimplyachievevariousweldingrequirementsofdifferentmaterials,metalsandnon-metals,andbecauseofthepenetrationandrefractionofthelaseritself,itcanbebasedonThetrajectoryofthespeedoflightitselfcanachieverandomfocuswithin360degrees,whichisundoubtedlyunimaginableunderthedevelopmentoftraditionalweldingtechnology.Inaddition,becauselaserweldingcanreleasealargeamountofheatinashortperiodoftimetoachieverapidwelding,ithaslowerenvironmentalrequirementsandcanbeperformedundergeneralroomtemperatureconditions,withouttheneedforvacuumorgasprotection.Afterdecadesofdevelopment,peoplehavethehighestlevelofunderstandingandrecognitionoflasertechnology,andithasgraduallyexpandedfromtheinitialmilitaryfieldtothemoderncivilianfield,andtheemergenceoflaserweldingtechnologyhasfurtherexpandedtheapplicationrangeoflasertechnology.Inthefuture,laserweldingtechnologycannotonlybeusedinfieldssuchasautomobiles,steel,andinstrumentmanufacturing,butalsoinmilitary,medical,andotherfields,especiallyinthemedicalfield,withthehelpofitsownhighheatandhightemperature.Thecharacteristicsofintegrationandhygienecanbebetterappliedinclinicaldiagnosisandtreatmentsuchasneuromedicineandreproductivemedicine.Anditsownprecisionadvantageswillalsobeappliedinmoreprecisioninstrumentmanufacturingindustries,whichwillcontinuetobenefitthedevelopmentofmankindandsociety.

Related Articles
TOP