Basicinformation
Introduction
Inthefieldofnon-metallasermarking,solidlasermarkingmachinesandgaslasermarkingmachines(CO2Lasercuttingmachine)Non-metallasercuttingmachinegenerallyreliesonthelaserpowertodrivethelasertubetoemitlight.Throughtherefractionofseveralreflectors,thelightistransmittedtothelaserhead,andthenthefocusinglensinstalledonthelaserheadconvergesthelightintoonepoint.,Andthispointcanreachaveryhightemperature,sothatthematerialisinstantlysublimatedintogas,whichissuckedawaybytheexhaustfan,soastoachievethepurposeofcutting;themaingasfilledinthelasertubeusedbythegenerallasercuttingmachineisCO2,thiskindoflasertubebecomesCO2lasertube,andthelasercuttingmachineusingthiskindoflasertubeiscalledCO2lasercuttingmachine.
Ceramicsubstrateprocessingapplication
Inordertodividetheceramicsubstrateintoindependentparts,alasermarkingmachinecanbeusedtomark(drill)aseriesofpartial(unpassed)hightoleranceholes.Theseholesareapproximatelyone-thirdofthedepthofthesubstrate,generatingpreferentialfaultlinesforlaterrupture.Usingothertechniques,itisalsopossibletoprocessvias,slots,anddeterminetopographyandfinepatternsonthesubstrate.
Duetotheabsorptioncharacteristicsofcommonlyusedceramics,CO2lasershavebecomethelaserofchoice.TheenergyofthepulsedCO2laserbeamisabsorbedontheceramicsurface,therebycausinglocalheating,meltingandvaporization.Figure2showsatopviewofa0.0045inchscribelineinalumina,showingthatduringtherelativelylongpulse(approximately75-300m,dependingonthethickness),underthelowenergyedgeoftheGaussianbeamenergyprofile,becauseHeataffectedzone(HAZ)causedbylocalmelting.
Formanyyears,CO2laserswillconsumealotofresourcesintermsofgasandenergywhenworkinginlongshifts,andrequireamaintenanceplan.Inaddition,thepulseparameterstypicallyusedinthisapplicationmeanthatthesealedtubeCO2lasertechnologyisnotsuitable.Onthewhole,afteryearsofextensiveimprovements,CO2lasersarestillbehindothertechnologiesintermsofreliabilityandmaintenanceissues.Duringmaintenance,thebeamqualityoftheselasersisstilleasytochange;thesmallestspotsizethatcanbeachievedisalsosusceptibletolongwaves.Individually,thelaserbeamabsorptioncharacteristicsofceramicshaveallowedthistechnologytoinfluencethismarketforalongtime.
Newscribingtechnology
PreviousattemptstoapplyNd:YAGlaserstothescribingprocesswereunsuccessfulbecausetheabsorptionof1.064μmwastooweak;therewasnotenoughenergydepositedonthesurfacelayertoproduceThedesiredeffect.Tothisend,SynchronLaserService(locatedinSouthLyon,Michigan,USA)hasdevelopedsurfacetreatmenttechnologytoenhancetheabsorptionoflaserlightbyceramicsinashorterwavelengthrange.Thisprocessquicklyandslightlydipsintotheceramicsurfaceandintensifiesthedepositionenergyofthenear-infraredlaserpulseatashortenoughdistancetoproducethenecessarymeltingandvaporization.Combiningthispatent-pendingsurfacetreatmenttechnologywiththefiberlasertechnologyofSPILasers(locatedinSouthampton,UK),theprocessperformanceachievedfarexceedstheprocessperformancethatcanbeachievedbyusingaCO2lasermarkingmachine.
Surfacetreatmentgreatlyenhancesthefiberlaserbeamintotheceramictopsurfacetostartthedrillingprocess.Theenhancedpoweroftheinteractionbetweenthelaserpulseandthesurfaceofthematerial,combinedwithacustomizedhigh-resolutionbeamdeliverysystemthatensuresconsistentspotsizeonthesurface,meansthatsmallertopographycanbeachievedontheceramicsubstrate.Synchronalsoconsideredsomeotherexistinglasertechnologies,hopingtobeabletoprocessevenfinerscribing;buttheconclusionisthatnotechnologycanachievethetargetspeedinitsownuniqueway,insomecasesatleast10timesslower.
ComparedwithCO2lasers,fiberlasersshowbetterconsistencyandreliability,andcanprocessfinertopography,includingthreetimestheedgequalityafterfractureabove.Figure5furthershowstheedgequalitythatcanbeachieved.Herewedescribetheoriginaledgecreatedbycuttingthearrowshape.Importantly,thenewprocesscanevenachieveproductionspeedsthatcannotbeachievedwithCO2lasers.
Ona0.0150inchthickaluminumoxidesubstrate,thescribingspeedexceeds1300inchesperminute,whichisabouttwicethatofaCO2laser(both30%deep);butthemachiningspeedisatleasttheaveragevalue.Inmostcases,thespeedexceedsthatofCO2lasers.AccordingtoSynchron,theuseofmobilecontrolsystemsinsteadoflasershasledtolimitedproduction.
Aluminumoxideandaluminumnitrideceramicscanbeprocessedinthisup-to-dateway.Whenaluminaisused,theprocesslimitisuptoasubstratethicknessofabout0.060inches,althoughthickermaterialsforharsherapplicationsarerequiredforlongerperiodsoftime.Thickersubstratescanalsoprovidemoreheatdissipation,forexampleinhigh-brightnessLEDapplications.
Aluminumnitrideceramicsaregenerallymoredifficulttoprocessthanaluminabecauseofbetterthermalconductivity,soprocessingrequiresproportionallygreaterpower.Ontheotherhand,afinermorphologycanbeachieved,becauseonlythehighestdensitypartofthebeamcanproducetherequiredprocess,andthehighthermalconductivityofthematerialminimizestheHAZonbothsidesofthebeamenergyprofile.Theinitialresultsofusingthisnewmethodareexcellent,andtheprocessusingthismaterialcanstillbefine-tuned.
Processimprovement
Fiberlaserscanprovideaseriesofuniquepropertiesandareusedinawiderangeofmaterialprocessing.Forexample,areliableGaussianbeamprofile(TEM00)isimportantforachievingandmaintainingaconsistentspotsizeonthesurface.Fiberlasersperformwellinthisrespect,andalloutputpowersexhibitaparticularlyhigh-qualitybeamdistribution,thusallowinglargeworkingdistances(independent).Anotheradvantageisthatthesmallspotsizeandthehigh-qualitylightbeamareconvertedintothehigh-brightnesslightofthefocalpoint,whichrealizesreliableprocessing,highaccuracy,andminimumHAZ.
Fiberlaserscanjointlyachievethegreatestreductioninoperatingcoststhroughthefollowingseveralways:reducedmaintenancecosts,noalignmentorcalibrationrequirements,longeruptime,andimprovedproductionqualityathigheryields.Fiberlasersarecompactanddurable,sotheyaresuitableforthemostchallengingindustrialenvironments.
Synchron'sproprietarytechnologyhasbrokenthroughanewfieldoftechnologicalprogressintheindustry,thatis,itcannotmatchtheprocessingofothermaterialsintheproductionofconsumerelectronicproducts.Therearerelativelyfewindustrygiants.Ontheonehand,thecostofcompetitionishigh,andontheotherhand,itisnecessarytomaintainflexibilityandchangeincustomerdemand.Facedwiththissituation,anytechnologicaladvancementmayleadtowinningimportantmarkets.
Thereducedprofilesizeachievedbythecombinationoffiberlaserandproprietarysurfacemodificationtechnologyopensthedoorforfinerscribingofelectronicproduct-gradeceramicprocessing.Themonthlyoutputusuallyexceeds10millionpieces,whichcaneasilymeetthehoneycombtype.Telephonesandmusicplayers,aswellashigh-densityLEDsforbacklightingandautomotiveapplications,requiretheproductionoflarge-scaleconsumerelectronicsproducts.Infact,someindustriesarerequiringceramicsubstrateholes<0.003inches,andtheaccuracyisbetterthan0.0005inches.ItisnoteasytoachievethisresolutionwithCO2lasermarkingmachines,butSynchron’snewmethodhasbeenThislevelisreachedinmassproduction.
Surfacetreatmentcanbesprayed,dippedorrolled,anddoesnotrequirealotofdryingtime.Theapplicationofceramicsurfacetreatmentdoesnotincreaseotherprocesssteps,becausesometypesofcoatingsteps(usuallyanti-spatterlayers)aremorecommonfortheestablishedCO2processingtechnology.Inaddition,theresiduesproducedbythenewprocessarelessactiveandinsmallerquantities,whichwillonlyeliminatetheproblemofsplashing.
Processingthefinermorphologyofceramicsubstratesathigherspeedsbringsadvantagestotheelectronicsindustryintermsofdesign,performanceandcost.Fiberlaserscanhelpachieveabetterbalanceamongtheimportantcriteriarequiredbyviablecompetition:usuallyeffectiveopticalperformance,processflexibility,highoutput,long-termsystemoperation,andreliability.InthecaseofSynchron,fiberlasershelptoensurealevelofceramicprocessingperformancethatcouldnotbeachievedbefore
Other
Industrialapplications
Theworld’sfirstCO2Lasercuttingmachinewasborninthe1970s.Formorethan30years,duetothecontinuousexpansionoftheapplicationfield,theCO2lasercuttingmachinehasbeencontinuouslyimproved.ManycompaniesathomeandabroadhaveengagedintheproductionofvariousCO2lasercuttingmachinestomeettheneedsofthemarket.Two-dimensionalflatcuttingmachine,three-dimensionalspacecurvecuttingmachine,pipecuttingmachine,etc.Accordingtothe2000annualreportoftheauthoritativemagazine"IndustrialLaserSolution"fortheapplicationoflaserindustryintheUnitedStates,thetotalnumberoflasercuttingsystems(mainlyCO2lasercuttingsystems)soldintheworldin1999was3325,withatotalof1.174billionUSdollars..Althoughthedevelopmenttrendoflasercuttingisrelativelyfast,theapplicationlevelisfarbehindcomparedwithdevelopedcountries.Asof2003,thetotalnumberofCO2lasercuttingsystemsusedinindustrialproductioninmycountryhasreachedabout500,accountingforabout1.5%ofthetotalnumberofoperatingsystemsintheworld.
ExampleofCO2lasercuttingprocessparametersfornon-metallicmaterials | |||||
Material | Thickness/mm | Cuttingspeed/(cm/min) | Assistgasandpressure/Mpa | Cuttingwidth/mm | |
0.25 | Plexiglas | 10 | 80 | N2 | 0.7 |
Polyesterfelt | 10 | 260 | N2 | 0.5 | |
Threadfabric(multilayer) | 15 | 90 | N2 | 0.5 | |
Cardboard | 0.5 | 300 | N2 | 0.4 | |
2.6 | 300 | N2 | 0.5 | ||
Quartzglass | 1.9 | 60 | 0.2 | ||
Polypropyleneboard | 5.5 | 70 | N2 | 0.5 | |
Polystyreneboard | 3.2 | 420 | N2 | 0.4 | |
0.5 | PVCboard | 4 | 170 | Air,0.15 | —— |
plexiglass | 10 | 120 | |||
Five-layerglueboard | 5 | 210 | |||
1.0 | Fiberboard | 15.6 | 450 | N2 | —— |
Multilayerplywood | 6.2 | 900 | |||
PVClaminate | 3.1 | 1050 | |||
SawdustBoard | 3.9 | 1800 | |||
3.1 | 2250 | ||||
acrylamideboard | 2.8 | 3390 | |||
3.2 | 2970 | ||||
3.5 | 2720 | ||||
0.05 | acrylic | 2.0 | 100 | —— | —— |
Artificialleather | 0.8 | 250 | |||
0.3 | gypsumboard | 9.0 | 50 | —— | —— |
Plywood | 10.0 | 110 | |||
Heatrejectionglass | 2.2 | 50 | |||
Rubbersheet | 5 | 50 | |||
Leather | 4 | 220 | |||
Chemicalfibercloth | 6.5 | 220 | |||
0.75 | 1200 |
Technicalparameters
LasertypeCO2sealedglasstubelaser
Workingplatformcrawlercuttingplatform
p>Maximumsingle-screenengravingformatrange250mm×250mm—450mm×450mm
Motionsystemofflineoronlinemotioncontrol,5-inchLCDscreendisplay
Powersupply220V±10%50Hz
SupportgraphicformatsAI,BMP,PLT,DXF,DST,etc.
Standard500Wsmokeextractor
Optionalspecialautomaticfeeder,coldwaterMachine(notequippedwithaircooling)
Applicableindustries
SuitableforCO2lasercuttingmachinesmainlyincludespecialpartsthatrequireuniformcutting,advertisements,decorations,etc.Stainlesssteelwithathicknessofnotmorethanthreemillimetersandnon-metallicmaterialswithathicknessofnotmorethan20millimetersusedintheserviceindustry,andOneistoprocessworkpieceswithcomplexcuttingcontoursbutasmallamounttosavethecostandcycleofmanufacturingmolds.