Analýza časových řad

Základní znalosti

Atimeseriesisasequenceofnumbersinchronologicalorder.

Charakteristika řady:

1.Arealisticandtruesetofdata,notobtainedthroughexperimentsinmathematicalstatistics.Sinceitistrue,itisastatisticalindicatorthatreflectsacertainphenomenon.Therefore,behindthetimeseriesisthelawofchangeofacertainphenomenon.

2.Dynamická data.

Základními kroky modelování série jsou:

1.Obtainthetimeseriesdynamicdataoftheobservedsystembymethodssuchasobservation,survey,statistics,andsampling.

2.Drawcorrelationgraphsbasedondynamicdata,conductcorrelationanalysis,andfindautocorrelationfunction.Thecorrelationdiagramcanshowthetrendandcycleofchanges,andcanfindjumppointsandinflectionpoints.Jumppointsareobservationsthatareinconsistentwithotherdata.Ifthejumppointisthecorrectobservationvalue,itshouldbetakenintoaccountwhenmodeling,ifitisanabnormalphenomenon,thejumppointshouldbeadjustedtotheexpectedvalue.Theinflectionpointisthepointatwhichthetimeseriessuddenlychangesfromanupwardtrendtoadownwardtrend.Ifthereisaninflectionpoint,differentmodelsmustbeusedtofitthetimeseriessegmentallyduringmodeling,suchasathresholdregressionmodel.

3.Identifyasuitablerandommodelandperformcurvefitting,thatis,useageneralrandommodeltofittheobservationdataofthetimeseries.Forshortorsimpletimeseries,trendmodelsandseasonalmodelspluserrorscanbeusedforfitting.Forstationarytimeseries,generalARMAmodel(autoregressivemovingaveragemodel)anditsspecialcaseautoregressivemodel,movingaveragemodelorcombined-ARMAmodelcanbeusedforfitting.Whentherearemorethan50observations,theARMAmodelisgenerallyused.Fornon-stationarytimeseries,theobservedtimeseriesmustbefirstdifferentiatedintoastationarytimeseries,andthenanappropriatemodelisusedtofitthedifferenceseries.

Charakteristika

Timeseriesanalysisisoneofthequantitativeforecastingmethods.Itincludesgeneralstatisticalanalysis(suchasautocorrelationanalysis,spectrumanalysis,etc.),theestablishmentandinferenceofstatisticalmodels,andtheoptimalprediction,controlandfilteringoftimeseries.Classicalstatisticalanalysisassumestheindependenceofdataseries,whiletimeseriesanalysisfocusesontheinterdependenceofdataseries.Thelatterisactuallyastatisticalanalysisoftherandomprocessofdiscreteindicators,soitcanberegardedasacomponentofrandomprocessstatistics.Forexample,therainfallofthefirstmonth,thesecondmonth,...,theNthmonthinacertainareaisrecorded,andtherainfallinthefuturemonthscanbeforecastedbyusingthetimeseriesanalysismethod.

Basicidea:Basedonthesystem'slimited-lengthoperatingrecords(observationdata),establishamathematicalmodelthatcanmoreaccuratelyreflectthedynamicdependenciescontainedinthesequence,anduseittopredictthefutureofthesystem.

Basicprinciples:Oneistorecognizethecontinuityofthedevelopmentofthings.Usingpastdata,wecaninferthedevelopmenttrendofthings.Thesecondistoconsidertherandomnessofthedevelopmentofthings.Thedevelopmentofanythingmaybeaffectedbyaccidentalfactors.Forthisreason,theweightedaveragemethodinstatisticalanalysisshouldbeusedtoprocesshistoricaldata.

Vlastnosti: jednoduché a snadné použití, snadné ovládání, ale špatná přesnost, obecně vhodné pouze pro krátkodobé předpovědi.

Klasifikace

Accordingtoitscharacteristics,thetimeserieshasthefollowingmanifestations,andproducescorrespondinganalysismethods:

1.Long-termtrendchanges:Affectedbyacertainbasicfactor,thedatashowsacertaintendencywhenitchangesovertime,anditsteadilyincreasesordecreasesaccordingtoacertainrule.Theanalysismethodsusedare:movingaveragemethod,exponentialsmoothingmethod,modelfittingmethod,etc.

2.Seasonalcyclechanges:Affectedbyfactorssuchasseasonalchanges,thesequencechangesregularlyaccordingtoafixedcycle,alsoknownasthebusinesscycle.Methodused:seasonalindex.

3. Cyklické změny: kolísavé změny s nepravidelnými cykly.

4. Náhodné změny: Změny sekvence způsobené mnoha nejistými faktory.

Timeseriesanalysismainlyincludesdeterministicchangeanalysisandrandomchangeanalysis.Amongthem,thedeterministicchangeanalysisincludestrendchangeanalysis,cyclechangeanalysis,andcyclechangeanalysis.Analýza náhodných změn:AR,MA,ARMAmodels,etc.

Specifické metody

Deterministická časosériová analýza

Thepurposeofdeterministictimeseriesanalysis:toovercometheinfluenceofotherfactors,simplymeasureacertaindeterministicfactoronthesequenceTheinfluenceofvariousdeterministicfactorsandtheircomprehensiveinfluenceonthesequenceareinferred.

Thepurposeoftimeseriestrendanalysis:Sometimeserieshaveverysignificanttrends.Thepurposeofouranalysisistofindthistrendinthesequenceandusethistrendtomakereasonablepredictionsforthedevelopmentofthesequence.

Commonmethods:trendfittingmethodandsmoothingmethod.

Thetrendfittingmethodistousetimeastheindependentvariableandthecorrespondingsequenceobservationvalueasthedependentvariabletoestablisharegressionmodelofthesequencevaluechangingwithtime.Includinglinearfittingandnonlinearfitting.

Theuseoccasionoflinearfittingistheoccasionwherethelong-termtrendshowslinearcharacteristics.Theparameterestimationmethodisleastsquareestimation.

Themodelis,,.

Theuseoccasionsofnonlinearfittingareoccasionswherethelong-termtrendshowsnon-linearcharacteristics.Theideaof​​parameterestimationistoconverteverythingthatcanbeconvertedintoalinearmodelintoalinearmodel,andusethelinearleastsquaremethodtoestimatetheparameters.Ifitcan'tbeconvertedtolinear,useiterativemethodtoestimatetheparameters.

Mezi modely patří,,,atd.

Smoothingmethodisacommonlyusedmethodfortrendanalysisandforecasting.Itusessmoothingtechnologytoweakentheinfluenceofshort-termrandomfluctuationsonthesequenceandsmooththesequence,therebyshowingthelawoflong-termtrendchanges.

Metoda předpovědi časových řad

Metoda předpovědi časových řadcanbeusedforshort-termforecasting,mid-termforecastingandlong-termforecasting.Accordingtothedifferentmethodsofdataanalysis,itcanbefurtherdividedinto:simplesequentialtimeaveragemethodandweightedsequentialtimeaveragemethod.

Simpleaveragemethod:alsoknownasarithmeticaveragemethod.Thatis,thestatisticalvalues​​ofanumberofhistoricalperiodsaretakenastheobservedvalues,andthearithmeticaverageiscalculatedasthepredictedvalueforthenextperiod.Thismethodisbasedonthefollowinghypothesis:"Itwasthesameinthepast,anditwillbethesameinthefuture."Itequatesandaveragesshort-termandlong-termdata,soitcanonlybeappliedtotrendforecastswherethingshavenotchangedmuch.Ifthingsshowacertainupwardordownwardtrend,thismethodshouldnotbeused.

Weightedaveragemethod:weightthehistoricaldataofeachperiodaccordingtothedegreeofshort-termandlong-terminfluence,andcalculatetheaveragevalueasthenextforecastvalue.

Analýza náhodných změn

Therandomtimeseriesmodel(timeseriesmodeling)referstoamodelbuiltusingonlyitspastvalues​​andrandomdisturbanceterms,anditsgeneralformis

.Takethelinearequation,theone-periodlag,andthewhitenoiserandomdisturbanceterm().

Model bude autoregresivním procesem prvního řádu AR(1):.Zde se konkrétně týká bílého šumu.

Obecnýp-orderautoregresivníprocesAR(p)je.

Pokud je náhodná porucha zakončena bílým šumem(), pak se vzorec(1) nazývá čistý AR(p)proces(čistýAR(p)proces),označuje se.

Pokud se nejedná o bílý šum, obvykle se to považuje za průměrný proces odsunu q-objednávkyMA(q):.

Zkombinujte čistý AR(p) s čistým MA(q) a získejte obecný autoregresivní pohybový průměr (aunoregresivní pohybový průměr)proces ARMA(p,q):.

Vzorec ukazuje:

1.Arandomtimeseriescanbegeneratedbyanautoregressivemovingaverageprocess,thatis,theseriescanbegeneratedbyitsownpastorlagvalueandrandomdisturbancetermsToexplain.

2.Ifthesequenceisstationary,thatis,itsbehaviordoesnotchangeovertime,thenwecanpredictthefuturethroughthepastbehaviorofthesequence.Thisisexactlytheadvantageoftherandomtimeseriesanalysismodel.ItshouldbenotedthatnoneoftheaboveARMA(p,q)modelscontainsaconstantterm.Ifaconstanttermisincluded,theconstanttermdoesnotaffecttheoriginalpropertiesofthemodel,becausethemodelcontainingtheconstanttermisconvertedtothemodelwithouttheconstanttermthroughappropriatedeformation.

Mainuses

Timeseriesanalysisiscommonlyusedinthemacro-controlofthenationaleconomy,regionalcomprehensivedevelopmentplanning,businessmanagement,marketpotentialprediction,meteorologicalforecast,hydrologicalforecast,earthquakeprecursorforecast,Croppestsanddiseasesforecast,environmentalpollutioncontrol,ecologicalbalance,astronomyandoceanography.Itmainlyincludesresearchandanalysisfromthefollowingaspects.

Popis systému

Accordingtothetimeseriesdataobtainedfromtheobservationofthesystem,thecurvefittingmethodisusedtoobjectivelydescribethesystem.

Systemanalýza

Whentheobservationsaretakenfrommorethantwovariables,thechangesinonetimeseriescanbeusedtoexplainthechangesintheothertimeseries,Soastogaininsightintothemechanismofagiventimeseries.

Předvídat budoucnost

Generally,theARMAmodelisusedtofitthetimeseriestopredictthefuturevalueofthetimeseries.

Rozhodování a kontrola

Accordingtothetimeseriesmodel,theinputvariablescanbeadjustedtokeepthesystemdevelopmentprocessatthetargetvalue,thatis,whentheprocessispredictedtodeviatefromthetargetThenecessarycontrolcanbecarriedout.

Související články
HORNÍ