Matematická logika

Definice

Mathematicallogicisaformallysymbolizedandmathematicallogicinformallogic,anditstillbelongstothecategoryofintellectuallogicinessence.Mathematicallogicisalsocalledsymboliclogicandtheoreticallogic.Itisbothabranchofmathematicsandabranchoflogic.Itisadisciplinethatusesmathematicalmethodstostudylogicorformallogic.Theresearchobjectistheformalsystemaftersymbolizingthetwointuitiveconceptsofproofandcalculation.Mathematicallogicisanindispensablepartofbasicmathematics.Althoughtherearetwocharactersoflogicinthename,itdoesnotbelongtothecategoryofpurelogic.

Výklad

Theso-calledmathematicalmethodisthegeneralmethodusedinexponentialscience,includingtheuseofsymbolsandformulas,existingmathematicalachievementsandmethods,especiallytheuseofformalaxioms.ThesystematicthinkingofstudyinglogicwithmathematicalmethodsgenerallytracedbacktoLeibniz.Hebelievedthatclassicaltraditionallogicmustbereformedanddevelopedtomakeitmorepreciseandeasytocalculate.LatergenerationsbasicallyworkedalongLeibniz'sideas.

Inshort,mathematicallogicispreciseandmathematicalformallogic.Itisthefoundationofmoderncomputertechnology.Thenewerawillbeaneraofgreatdevelopmentinmathematics,andmathematicallogicwillplayakeyroleinit.Logicisadisciplinethatexplores,elaborates,andestablishestheprinciplesofeffectivereasoning.ItwasfirstcreatedbytheancientGreekscholarAristotle.Thesubjectthatusesmathematicalmethodstostudyquestionsaboutreasoningandproofiscalledmathematicallogic.Alsocalledsymboliclogic.

Generace

Theideaof​​usingcomputationalmethodstoreplacethelogicalreasoningprocessinpeople'sthinkingwasproposedasearlyastheseventeenthcentury.Leibnizonceenvisionedwhetherhecouldcreatea"universalscientificlanguage"thatcoulduseformulastocalculatethereasoningprocesslikemathematics,soastodrawcorrectconclusions.Duetothesocialconditionsatthetime,hisideawasnotrealized.However,histhoughtsarethegermofpartofmodernmathematicallogic.Inthissense,Leibnizcanbesaidtobeapioneerofmathematicallogic.

In1847,BritishmathematicianBooleanpublished"MathematicalAnalysisofLogic",established"BooleanAlgebra",andcreatedasetofsymbolsystem,usingsymbolstorepresentvariousconceptsinlogic.Booleanestablishedaseriesofalgorithms,usedalgebraicmethodstostudylogicalproblems,andinitiallylaidthefoundationofmathematicallogic.

Attheendofthenineteenthcenturyandthebeginningofthetwentiethcentury,mathematicallogichasdevelopedconsiderably.In1884,theGermanmathematicianFregepublishedthebook"BasicsofArithmetic",whichintroducedthesymbolsofquantifiers.Makethesymbolsystemofmathematicallogicmorecomplete.ContributingtotheestablishmentofthisdisciplineisalsotheAmericanPierce,whoalsointroducedlogicalsymbolsinhiswritings.Asaresult,themostbasictheoreticalfoundationofmodernmathematicallogichasgraduallyformedandbecomeanindependentsubject.

Obsah

Whatisincludedinmathematicallogic?Broadlyspeaking,mathematicallogicincludessettheory,modeltheory,prooftheory,andrecursiontheory.Herewefirstintroduceitstwomostbasicandimportantcomponents,namely"propositionalcalculus"and"predicatecalculus".Propositionalcalculusisthestudyofhowpropositionsusesomelogicalconnectivestoformmorecomplexpropositionsandmethodsoflogicalreasoning.Apropositionisasentencethathasspecificmeaningandcanjudgewhetheritistrueorfalse.

Ifweregardpropositionsastheobjectsofoperations,likenumbers,lettersoralgebraicexpressionsinalgebra,andconsiderlogicalconnectivesasoperationalsymbols,justlikethe"add,subtract,multiply,anddivide"inalgebra."Inthatway,theprocessofcomposingcompoundpropositionsfromsimplepropositionscanberegardedastheprocessoflogicaloperations,thatis,thecalculationofpropositions.Suchlogicaloperationsalsohavecertainpropertieslikealgebraicoperationsandsatisfycertainrulesofoperation.Forexample,itsatisfiestheexchangelaw,associativelaw,anddistributionlaw,butalsosatisfiesthelogicalidentitylaw,absorptionlaw,doublenegationlaw,DiMorgan'slaw,syllogismlaw,andsoon.Usingtheselaws,wecancarryoutlogicalinferences,simplifycomplexpropositions,andinferwhethertwocomplexpropositionsareequivalent,thatis,whethertheirtruthtablesareexactlythesame,andsoon.

Aspecificmodelofpropositionalcalculusislogicalalgebra.Logicalalgebraisalsocalledswitchalgebra.Itsbasicoperationsarelogicaladdition,logicalmultiplication,andlogicalnegation,whichare"or","and",and"not"inpropositionalcalculus.Theoperandsareonlytwonumbers,0and1,whichareequivalent"True"and"False"inpropositionalcalculus.Theoperationalcharacteristicsoflogicalgebraareexactlythesameasthephenomenaofonandoff,highpotentialandlowpotential,conductionandcut-offincircuitanalysis.Thereareonlytwodifferentstates.Therefore,itiswidelyusedincircuitanalysis.

Theuseofelectroniccomponentscanformgatecircuitsequivalenttologicaladdition,logicalmultiplicationandlogicalnegation,whicharelogicalelements.Simplelogicelementscanalsobeformedintovariouslogicnetworks,sothatanycomplexlogicalrelationshipcanberealizedbylogicalelementsthroughappropriatecombination,sothatelectronicelementshavethefunctionoflogicaljudgment.Therefore,thereareimportantapplicationsinautomaticcontrol.Predicatecalculusisalsocalledpropositionalcalculus.Inpredicatecalculus,theinternalstructureofapropositionisanalyzedintoalogicalformwithsubjectandpredicate.Thepropositioniscomposedofpropositionalitems,logicalconnectivesandquantifiers,andthenthelogicalreasoningrelationshipbetweensuchpropositionsisstudied.

Thepropositionaltermreferstoalogicalformulathatcontainsvariabletermsinadditiontoconstantterms.Constantreferstocertainobjectsorcertainattributesandrelationships;variablereferstoanyonewithinacertainrange,andthisrangeiscalledthevariabledomainofthevariable.Propositionaltermsaredifferentfrompropositionalcalculus.Itdoesnotmatterwhetheritistrueorfalse.Ifthevariabletermisreplacedbyacertainobjectconcept,thenthepropositionalconnotationbecomesatrueorfalseproposition.Adduniversalquantifierorexistentialquantifiertopropositionalconnotation,thenitbecomesuniversalpropositionorspecialproposition.

Rozvoj

Aftertheestablishmentofthedisciplineofmathematicallogic,ithasdevelopedrapidly,andtherearemanyfactorsthatpromoteitsdevelopment.Forexample,theestablishmentofnon-Euclideangeometryhaspromptedpeopletostudythenon-contradictionbetweennon-EuclideangeometryandEuclideangeometry.

Theemergenceofsettheoryisamajoreventinthedevelopmentofmodernmathematics,butintheprocessofresearchonsettheory,therehasbeenaso-calledthirdcrisisinthehistoryofmathematics.Thiscrisiswascausedbythediscoveryoftheparadoxofsettheory.Whatistheparadox?Paradoxesarelogicalcontradictions.Settheoryisoriginallyabranchofverystrictargumentation,andisrecognizedasthefoundationofmathematics.

In1903,theBritishphilosopher,logician,andmathematicianRussellproposedthe"RussellParadox"namedafterhimforsettheory.Theproposalofthisparadoxalmostshooktheentiremathematicalfoundation.

TherearemanyexamplesinRussell’sParadox,oneofwhichispopularandfamousisthe"BarberParadox":Thereisabarberinacertaincountry,andonedayheannouncedthathewouldonlyshavehimself.Manshaves.Thenaquestionarises:Doesthebarbershavehimselfornot?Ifheshaveshimself,heistheonewhoshaveshimself.Accordingtohisprinciple,heshouldnotshavehimself;ifhedoesnotshavehimself,thenheistheonewhodoesnotshavehimself,accordingtohisInprinciple,heshouldshavehimselfagain.Thiscreatesacontradiction.

Theproposingoftheparadoxhaspromptedmanymathematicianstostudythenon-contradictoryproblemofsettheory,whichhasledtoanimportantbranchofmathematicallogic-axiomsettheory.

Theemergenceofnon-Euclideangeometryandthediscoveryoftheparadoxofsettheoryindicatethattherearestillmanyproblemsinmathematics.Asaresearchobject,studyingthelogicalstructureofmathematicalsystemsandthelawsofproofs,thishasproducedanotherbranchofmathematicallogic-prooftheory.

Mathematicallogichasrecentlydevelopedmanynewbranches,suchasrecursiontheoryandmodeltheory.Recursiontheorymainlystudiesthetheoryofcomputability,whichiscloselyrelatedtothedevelopmentandapplicationofcomputers.Modeltheorymainlystudiestherelationshipbetweenformalsystemsandmathematicalmodels.Mathematicallogichasdevelopedrapidlyinrecentyears.Themainreasonisthatthissubjecthashadasignificantimpactonthedevelopmentofotherbranchesofmathematicssuchassettheory,numbertheory,algebra,topology,etc.,especiallythenewlyformedcomputerscience..Inturn,thedevelopmentofotherdisciplineshasalsopromotedthedevelopmentofmathematicallogic.

Becauseitisanewlyemergingandfast-developingsubject,italsohasmanyproblemsthatneedtobestudiedindepth.Manymathematiciansarenowstudyingtheproblemsofmathematicallogicitself.

Inshort,theimportanceofthissubjectisalreadyveryobvious,andithasarousedtheconcernandattentionofmanypeople.

Systém

Themainbranchesofmathematicallogicinclude:logicalcalculus(includingpropositionalcalculusandpredicatecalculus),modeltheory,prooftheory,recursiontheoryandaxiomaticsettheory.Therearemanyoverlapsbetweenmathematicallogicandcomputerscience,andbothbelongtosciencethatsimulatesthemechanismofhumancognition.Manypioneersofcomputersciencearebothmathematiciansandlogicians,suchasAlanTuringandChurch.

Theresearchofprocedurallinguisticsandsemanticsisderivedfrommodeltheory,whiletheprogramverificationisderivedfrommodelcheckingofmodeltheory.

Curry-Howardisomorphismgivestheequivalenceof"proof"and"procedure".Thisresultisrelatedtoprooftheory,andintuitionisticlogicandlinearlogicplayabigrolehere.Calculussuchaslambdacalculusandcombinatorlogicarenowidealprogramminglanguages.

Počítačscience'sachievementsinautomaticverificationandautomaticsearchforprooftechniqueshavecontributedtothestudyoflogic,suchasautomatictheoremprovingandlogicprogramming.

Počítač

Whentherearemorethantwologicstatesinthelogicalgebra(suchas0,1,2ormorestates),therearetwobasiclogicsofthegeneralmodel.Oneisthelogicofchangingfromonestatetoanother,whichisaunarylogic;theotheristhelogicofchoosingoneofthetwostatesaccordingtoacertainrule(suchascomparingthesize).Thisisabinarylogic.

Accordingtothesetwologics,anylogicalrelationshipofanynumberofstatescanbeexpressed,thatis,thesmallestexpression.Thatis,thelogicofanymulti-stateiscomplete.Whenthenumberoflogicalstatesexpandsbyarationalorderofmagnitudeormore.Anymathematicaloperationcanbeexpressedjointlybytwooperationalrelations:additionandsubtractionandcomparisonofmagnitude.

Související články
HORNÍ