Související koncepty
Isolatedpoint:ThepointinVthatisnotassociatedwithanyedgeinEiscalledtheisolatedpointofD.
Simplegraph:Agraphwithoutparalleledgesiscalledasimplegraph.
Completegraph:BetweenanytwoverticesUanduinthegraph,thereareexactlytwodirectededges(u,v),and(v,u),thenCallthedirectedgraphDacompletegraph.
Basicgraph:RemoveeachedgeofthedirectedgraphDtogetacorrespondingundirectedgraphG,whichiscalledthebasicgraphofD.CalldtheDirectionAlGraphofg.
Stronglyconnectedgraph:GivenadirectedgraphG=(VE),andgivenanytwonodesuandvinthegraphG,ifthenodeuItismutuallyreachablewithnodev,thatis,thereisatleastonepaththatcanstartfromnodeuandendatnodev,andthereisatleastonepaththatcanstartfromnodevandendatnodeu,thenitissaidthatthereshouldbeThedigraphGisastronglyconnectedgraph.
Weaklyconnectedgraph:Ifatleastonepairofnodesdoesnotsatisfyone-wayconnectivity,butafterremovingtheedgedirection,itisaconnectedgraphfromthepointofviewofanundirectedgraph,thenDiscalledItisaweaklyconnectedgraph.
One-wayconnectedgraph:Ifeachpairofnodesisconnectedinatleastonedirection,thenDiscalledaone-wayconnectedgraph.
Stronglyconnectedcomponent:TheextremelystronglyconnectedsubgraphofthedirectedgraphGiscalledthestronglyconnectedcomponentofthedirectedgraph.
Directedpath:Thereisalwayssuchanindependentset5inacyclicdirectedgraphD,sothatanypointiny-Js",thereexistsH∈S,fromMto"Thereisadirectedpathwithalengthnotexceeding2.
Matice sousedství
Kromě forforisolatedvertices, AnyvertexisAssociated swithatleastoneEdge.Proto AnyDiredGraph, bez ohledu na to, co je možné.Například, pokud okraje Dare následující:
(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3, 4), (4,4),
NothatWelistTheedgesOfDaccordingTothedictionarySequence, buthereisnota, b, c,..., but1,2,3....
Podle izonisidea, WecanuseaMaterCoCompletelyDescribeanyDiredGraph.ThisTheDiredGraphadjaCenceMatrix.
ŘešeníTheShortestPath
FortheshortestProFloFoFoFoFoFadiredGraph, theCalculationStepsaretheSaMeasSolvingTheShortestProFOFOFOFOFOFOFANUNDRIDEDETTERGRAPH.TmaiAinDifferetiSthattheshorTestPathoFloFoFanundiredGrapHuseSasinglelabelingMethod.Thesingle labelingMetoAsSignAright-of-waylabelloeachpoint; a forthediredshortestpathproblem, theDouble-labelingMetdisesUsed.TheDOUBLELABELINGMETODISTOASSIGNTWOLABEALSTOEACHPoint: ThePathAndtherightofway.
Dosažitelnost
Foranundirectraph, iFitisContect, thenTheremustBeaPathBetweenNeanytwoverticesFit.Proto skrze tento „dosah“ z OneverTextoanothervertex.IfTheverTex "CanreachU, theitCanalsoreachU", to, VanduareMutuallyaable.
Fordimedgraphs, thesituationIsdifferent, becausethereisapathfromutov, který.
Předpokládané, antu, v∈D, ifteSeisapathFromvertexUtoverTexv, thetisIsIsAidThatvertexvTovertexuisReachable.
TheConceptofreachabilityHasnothingTodowithTheNumberandLengththeRevariousPathsFromUtov.Kromě toho, outsEsakeofCompleness, itisstipulatedtanyvertextoits areachable.
AccessibilityIsAbinabinaryRelationshipBetweentheverticesOfadiredGraph.Podledefinition, itisreflexiveandtransitive.Obecně závisí, dosažitelnostísneitherSymmetricnorantisymmetric.