Bayesovská síť

Introduction

Bayesiannetwork,alsoknownasbeliefnetwork,isanextensionofBayesianmethodandiscurrentlyoneofthemosteffectivetheoreticalmodelsinthefieldofuncertainknowledgeexpressionandreasoning.SinceitwasproposedbyPearlin1988,ithasbecomearesearchhotspotinrecentyears.ABayesiannetworkisaDirectedAcyclicGraph(DAG),whichiscomposedofnodesrepresentingvariablesanddirectededgesconnectingthesenodes.Nodesrepresentrandomvariables,andthedirectededgesbetweennodesrepresentthemutualrelationshipbetweennodes(fromtheparentnodetoitschildnodes).Conditionalprobabilityisusedtoexpressthestrengthoftherelationship.Ifthereisnoparentnode,thepriorprobabilityisused.Informationexpression.Thenodevariablecanbeanabstractionofanyproblem,suchas:testvalue,observationphenomenon,opinionconsultation,etc.Itissuitableforexpressingandanalyzinguncertainandprobabilisticevents,appliedtodecision-makingthatconditionallyreliesonmultiplecontrolfactors,andcanmakeinferencesfromincomplete,inaccurateoruncertainknowledgeorinformation.

Matematická definice

NechťG=(I,E)denoteaDirectedacyclicgraph( DAG), kdeIpředstavuje sadu padlých uzlů v grafu aEpředstavuje sadu směrovaných spojovacích liniových segmentů a NechťX=(X i)iIje náhodná proměnná reprezentovaná anodou< i>ivstoupí do cyklického grafu,Pokud lze společné rozdělení pravděpodobností uzluXvyjádřit jako:

pak se X nazývá bayesovská síť relativní k směrovanému cyklickému grafu G, který představuje uzel „příčinu“.

Foranyrandomvariable,thejointdistributioncanbeobtainedbymultiplyingtherespectivelocalconditionalprobabilitydistributions:

Accordingtotheaboveformula,wecancombinethejointdistributionofaBayesiannetworkTheprobabilitydistributioniswrittenas:

(Foreach"dependent"variableXjrelativetoXi)

Thedifferencebetweentheabovetwoexpressionsliesinthepartoftheconditionalprobability.IntheBayesiannetwork,ifthe"dependent"variableisknown,somenodeswillbeconditionallyindependentfromthe"dependent"variable,andonlyrelatedtothe"dependent"variable.Onlythenodeoftheconditionalprobabilityexists.

Ifthenumberofdependenciesofthejointdistributionisveryrare,usingtheBayesianfunctionmethodcansaveconsiderablememorycapacity.Forexample,ifyouwanttostore10variableswhosevalues​​areall0or1asaconditionalprobabilitytabletype,anintuitiveideaknowsthatwehavetocalculateatotalofvalues;butifthereisnocorrelationamongthese10variables."Ifthe“dependent”variableismorethanthreeormore,thentheconditionalprobabilitytableoftheBayesiannetworkonlyneedstocalculateatmostonevalue.AnotheradvantageoftheBayesianInternetisthatitiseasierforhumanstoknowwhetherthevariablesareconditionallyindependentordependentandthetypeoflocaldistribution(localdistribution)tofindallrandomvariablesThejointdistribution.

Solutionmethod

TheaboveexampleisaverysimpleBayesiannetworkmodel,butifthemodelisverycomplex,thentheenumerationmethodwillbeusedtosolvetheprobability.Itbecomesverycomplicatedanddifficulttocalculate,sootheralternativemethodsmustbeused.Generallyspeaking,Bayesianprobabilitycanbecalculatedinthefollowingways:

Přesné uvažování

·

Vyčíslená metoda uvažování (jako je výše uvedený příklad)

·

·

Algoritmus eliminace proměnných (eliminace proměnných)

·

Randomreasoning (MonteCarlomethod)

·

Algoritmus přímého vzorkování

·

·

Algoritmus vzorkování zamítne

·

·

Algoritmus vážení podobně

·

·

MarkovchainMonteCarloMarkovchainMonteCarloalgorithm

·

Here,taketheMarkovchainMonteCarloalgorithmasanexample,andthetypeofMarkovchainMonteCarloalgorithmTherearemany,soonlyoneofthestepsofGibbssamplingisexplainedhere:First,fixthevariablewithagivenvalue,andthenrandomlygiveaninitialvaluetotheothervariableswithoutagivenvalue,andthenenterthefollowingiterativesteps:

(1)Náhodně vyberte jednu z proměnných bez uvedené hodnoty

(2) Vyzkoušejte novou hodnotu z podmíněného rozdělení a poté přepočítejte

Aftertheiterativeclumps,deletethepreviousnumbersthatarenotyetstable,andyoucanfindtheapproximateconditionalprobabilitydistribution.TheadvantageoftheMarkovchainMonteCarloalgorithmisthatitisveryefficientwhencomputingalargenetwork,butthedisadvantageisthattheextractedsamplesarenotindependent.

WhenthestructureandparametersontheBayesiannetworkareknown,wecanusetheabovemethodstofindtheprobabilityofaspecificsituation,butifthestructureorparametersontheInternetareunknown,wemustItismoredifficulttoestimatethestructureorparametersofthenetworkbasedontheobserveddata.Generallyspeaking,itismoredifficulttoestimatethestructureofthenetworkthantheparametersonthenode.AccordingtotheunderstandingoftheBayesiannetworkstructureandthecompletenessoftheobservations,wecandivideitintothefollowingfoursituations:

StrukturaBayesovská síť

Postřehy

Metody

Známé

Dokončeno

MaximumlikelihoodestimationMethod(MLE)

Známé

Část

EMalgoritmus

Metoda lezení do kopce GreedyHill

Neznámé

Dokončeno

Prohledejte celý modelový prostor

Neznámé

Část

Strukturální algoritmus

EMalgoritmus

Ohraničená kontrakce

Funkce

1.Bayesova síť sama o sobě není nejistá v příčinné souvislosti s modelem asociace.Bayesova síť se liší od ostatních rozhodovacích modelů. Sama o sobě je pravděpodobná, že je možné držet se všech známých,relativních,relačníchmodelů.

2.Bayesiannetworkhasastrongabilitytodealwithuncertainproblems.Bayesiannetworkexpressesthecorrelationbetweenvariousinformationelementswithconditionalprobability,andcanlearnandreasonundertheconditionoflimited,incompleteanduncertaininformation.

3.Bayesiannetworkscaneffectivelyexpressandintegratemulti-sourceinformation.Bayesiannetworkcanincorporatevariousinformationrelatedtofaultdiagnosisandmaintenancedecision-makingintothenetworkstructure,andprocessitinaunifiedmanneraccordingtothenode,whichcaneffectivelyintegrateinformationrelatedtotherelationship.

ForBayesiannetworkreasoningresearch,avarietyofapproximatereasoningalgorithmsareproposed,whicharemainlydividedintotwocategories:simulation-basedmethodsandsearch-basedmethods.Inthefieldoffaultdiagnosis,asfarasourhydropowersimulationisconcerned,theprobabilityoffailureisoftenverysmall,soitisgenerallymoresuitabletousesearchinferencealgorithms.Foranexample,wemustfirstanalyzewhichalgorithmmodeltouse:

a.)Ifthenodereliabilitynetworkofthisexampleisasimpledirectedgraphstructure,anditsnumberofnodesissmall,AdopttheprecisereasoningofBayesiannetwork,whichincludesmulti-treepropagationalgorithm,clumptreepropagationalgorithm,graphreductionalgorithm,selecttheappropriatealgorithmfortheinstanceevent;

b.)IfitistheinstanceThegraphstructureofthedrawnnodeiscomplexandthenumberofnodesislarge.Wecanuseapproximatereasoningalgorithmtostudyit.Forspecificimplementation,itisbesttosimplifythecomplexandhugenetwork,andthenconsideritincombinationwithprecisereasoning.

Indailylife,peopleoftenmakecommonsensereasoning,andthiskindofreasoningisusuallyinaccurate.Forexample,ifyouseeapersonwithdamphaircominginandyouthinkitisrainingoutside,thenyoumaybewrong;ifyouseeamanandawomanwithachildinthepark,youthinktheyareafamily,youmayalsoMadeamistake.Inengineering,wealsoneedtomakescientificandreasonablereasoning.However,theproblemsinengineeringpracticearegenerallymorecomplicated,andtherearemanyuncertainfactors.Thisbringsgreatdifficultiestoaccuratereasoning.Longago,uncertaintyreasoningwasanimportantresearchfieldofartificialintelligence.Althoughmanyresearchersinthefieldofartificialintelligenceintroduceothernon-probabilisticprinciples,theyalsobelievethatitispossibletoconstructanduseprobabilisticmethodsbasedoncommonsensereasoning.Inordertoimprovetheaccuracyofreasoning,peopleintroducedprobabilitytheory.TheBayesianNetwork(BayesianNetwork)firstproposedbyJudeaPearlin1988isessentiallyaprobability-baseduncertaintyreasoningnetwork.Itisagraphicalmodelusedtoexpresstheconnectionprobabilityofasetofvariables,anditprovidesawaytoexpresscausalinformation.Atthattime,itwasmainlyusedtodealwithuncertaininformationinartificialintelligence.Subsequently,itgraduallybecamethemainstreamofinformationtechnologytodealwithuncertainty,andithasbeenimportantlyappliedinmanyintelligentsystemsinthefieldsofcomputerintelligencescience,industrialcontrol,andmedicaldiagnosis.

Bayesiantheoryisanimportanttooltodealwithuncertaininformation.Asamethodofuncertaintyreasoningbasedonprobability,Bayesiannetworkshavebeenimportantapplicationsinintelligentsystemsdealingwithuncertaininformation,andhavebeensuccessfullyusedinmedicaldiagnosis,statisticaldecision-making,expertsystems,learningpredictions,etc.field.ThesesuccessfulapplicationsfullydemonstratethatBayesiannetworktechnologyisapowerfulmethodofuncertaintyreasoning.

Aplikační úroveň Bayesových sítí

Bayesovské sítě se v současnosti používají ve výpočetní biologii a bioinformatických sítích pro regulaci genů), proteinová struktura, analýza genových výrazů, lékařství, klasifikace dokumentů, získávání informací, systémy pro podporu rozhodování, inženýrství, herní zákony, fúze dat

Související články
HORNÍ