Анализ на времеви редове

Основни знания

Atimeseriesisasequenceofnumbersinchronologicalorder.

Характеристики на меки сериали:

1.Arealisticandtruesetofdata,notobtainedthroughexperimentsinmathematicalstatistics.Sinceitistrue,itisastatisticalindicatorthatreflectsacertainphenomenon.Therefore,behindthetimeseriesisthelawofchangeofacertainphenomenon.

2.Динамични данни.

Основните стъпки на моделирането на времеви серии са:

1.Obtainthetimeseriesdynamicdataoftheobservedsystembymethodssuchasobservation,survey,statistics,andsampling.

2.Drawcorrelationgraphsbasedondynamicdata,conductcorrelationanalysis,andfindautocorrelationfunction.Thecorrelationdiagramcanshowthetrendandcycleofchanges,andcanfindjumppointsandinflectionpoints.Jumppointsareobservationsthatareinconsistentwithotherdata.Ifthejumppointisthecorrectobservationvalue,itshouldbetakenintoaccountwhenmodeling,ifitisanabnormalphenomenon,thejumppointshouldbeadjustedtotheexpectedvalue.Theinflectionpointisthepointatwhichthetimeseriessuddenlychangesfromanupwardtrendtoadownwardtrend.Ifthereisaninflectionpoint,differentmodelsmustbeusedtofitthetimeseriessegmentallyduringmodeling,suchasathresholdregressionmodel.

3.Identifyasuitablerandommodelandperformcurvefitting,thatis,useageneralrandommodeltofittheobservationdataofthetimeseries.Forshortorsimpletimeseries,trendmodelsandseasonalmodelspluserrorscanbeusedforfitting.Forstationarytimeseries,generalARMAmodel(autoregressivemovingaveragemodel)anditsspecialcaseautoregressivemodel,movingaveragemodelorcombined-ARMAmodelcanbeusedforfitting.Whentherearemorethan50observations,theARMAmodelisgenerallyused.Fornon-stationarytimeseries,theobservedtimeseriesmustbefirstdifferentiatedintoastationarytimeseries,andthenanappropriatemodelisusedtofitthedifferenceseries.

Характеристики

Timeseriesanalysisisoneofthequantitativeforecastingmethods.Itincludesgeneralstatisticalanalysis(suchasautocorrelationanalysis,spectrumanalysis,etc.),theestablishmentandinferenceofstatisticalmodels,andtheoptimalprediction,controlandfilteringoftimeseries.Classicalstatisticalanalysisassumestheindependenceofdataseries,whiletimeseriesanalysisfocusesontheinterdependenceofdataseries.Thelatterisactuallyastatisticalanalysisoftherandomprocessofdiscreteindicators,soitcanberegardedasacomponentofrandomprocessstatistics.Forexample,therainfallofthefirstmonth,thesecondmonth,...,theNthmonthinacertainareaisrecorded,andtherainfallinthefuturemonthscanbeforecastedbyusingthetimeseriesanalysismethod.

Basicidea:Basedonthesystem'slimited-lengthoperatingrecords(observationdata),establishamathematicalmodelthatcanmoreaccuratelyreflectthedynamicdependenciescontainedinthesequence,anduseittopredictthefutureofthesystem.

Basicprinciples:Oneistorecognizethecontinuityofthedevelopmentofthings.Usingpastdata,wecaninferthedevelopmenttrendofthings.Thesecondistoconsidertherandomnessofthedevelopmentofthings.Thedevelopmentofanythingmaybeaffectedbyaccidentalfactors.Forthisreason,theweightedaveragemethodinstatisticalanalysisshouldbeusedtoprocesshistoricaldata.

Характеристики: прост и лесен за използване, лесен за управление, но слаба точност, като цяло подходящ само за краткосрочни прогнози.

Класификация

Accordingtoitscharacteristics,thetimeserieshasthefollowingmanifestations,andproducescorrespondinganalysismethods:

1.Long-termtrendchanges:Affectedbyacertainbasicfactor,thedatashowsacertaintendencywhenitchangesovertime,anditsteadilyincreasesordecreasesaccordingtoacertainrule.Theanalysismethodsusedare:movingaveragemethod,exponentialsmoothingmethod,modelfittingmethod,etc.

2.Seasonalcyclechanges:Affectedbyfactorssuchasseasonalchanges,thesequencechangesregularlyaccordingtoafixedcycle,alsoknownasthebusinesscycle.Methodused:seasonalindex.

3. Циклични промени: променливи промени с нередовни цикли.

4. Случайни промени: Промени в последователността, причинени от много несигурни фактори.

Timeseriesanalysismainlyincludesdeterministicchangeanalysisandrandomchangeanalysis.Amongthem,thedeterministicchangeanalysisincludestrendchangeanalysis,cyclechangeanalysis,andcyclechangeanalysis.Анализ на случайни промени:AR,MA,ARMAmodels,etc.

Специфични методи

Детерминистичен анализ на времеви редове

Thepurposeofdeterministictimeseriesanalysis:toovercometheinfluenceofotherfactors,simplymeasureacertaindeterministicfactoronthesequenceTheinfluenceofvariousdeterministicfactorsandtheircomprehensiveinfluenceonthesequenceareinferred.

Thepurposeoftimeseriestrendanalysis:Sometimeserieshaveverysignificanttrends.Thepurposeofouranalysisistofindthistrendinthesequenceandusethistrendtomakereasonablepredictionsforthedevelopmentofthesequence.

Commonmethods:trendfittingmethodandsmoothingmethod.

Thetrendfittingmethodistousetimeastheindependentvariableandthecorrespondingsequenceobservationvalueasthedependentvariabletoestablisharegressionmodelofthesequencevaluechangingwithtime.Includinglinearfittingandnonlinearfitting.

Theuseoccasionoflinearfittingistheoccasionwherethelong-termtrendshowslinearcharacteristics.Theparameterestimationmethodisleastsquareestimation.

Темоделис,,.

Theuseoccasionsofnonlinearfittingareoccasionswherethelong-termtrendshowsnon-linearcharacteristics.Theideaof​​parameterestimationistoconverteverythingthatcanbeconvertedintoalinearmodelintoalinearmodel,andusethelinearleastsquaremethodtoestimatetheparameters.Ifitcan'tbeconvertedtolinear,useiterativemethodtoestimatetheparameters.

Моделите включват,,,и др.

Smoothingmethodisacommonlyusedmethodfortrendanalysisandforecasting.Itusessmoothingtechnologytoweakentheinfluenceofshort-termrandomfluctuationsonthesequenceandsmooththesequence,therebyshowingthelawoflong-termtrendchanges.

Метод за прогнозиране на времеви редове

Метод за прогнозиране на времеви редовеcanbeusedforshort-termforecasting,mid-termforecastingandlong-termforecasting.Accordingtothedifferentmethodsofdataanalysis,itcanbefurtherdividedinto:simplesequentialtimeaveragemethodandweightedsequentialtimeaveragemethod.

Simpleaveragemethod:alsoknownasarithmeticaveragemethod.Thatis,thestatisticalvalues​​ofanumberofhistoricalperiodsaretakenastheobservedvalues,andthearithmeticaverageiscalculatedasthepredictedvalueforthenextperiod.Thismethodisbasedonthefollowinghypothesis:"Itwasthesameinthepast,anditwillbethesameinthefuture."Itequatesandaveragesshort-termandlong-termdata,soitcanonlybeappliedtotrendforecastswherethingshavenotchangedmuch.Ifthingsshowacertainupwardordownwardtrend,thismethodshouldnotbeused.

Weightedaveragemethod:weightthehistoricaldataofeachperiodaccordingtothedegreeofshort-termandlong-terminfluence,andcalculatetheaveragevalueasthenextforecastvalue.

Анализ на случайни промени

Therandomtimeseriesmodel(timeseriesmodeling)referstoamodelbuiltusingonlyitspastvalues​​andrandomdisturbanceterms,anditsgeneralformis

.Takethelinearequation,theone-periodlag,andthewhitenoiserandomdisturbanceterm().

Моделът ще бъде авторегресивен процес от първи ред AR(1):.Тук конкретно се отнася до белия шум.

Общият авторегресивен процес AR(p) на реда на p е.

Ако терминът на случайно смущение е бял шум(), тогава формулата(1) се нарича чист AR(p)процес(чист AR(p)процес), означен като.

Ако няма бял шум, обикновено се счита, че процесът на движеща се средна стойност от порядъка на q MA(q):.

Комбинирайте pureAR(p) с pureMA(q)заедно с общ авторегресивен пълзящ среден(aunoregressivemovingaverage)процес ARMA(p,q):.

Формулата показва:

1.Arandomtimeseriescanbegeneratedbyanautoregressivemovingaverageprocess,thatis,theseriescanbegeneratedbyitsownpastorlagvalueandrandomdisturbancetermsToexplain.

2.Ifthesequenceisstationary,thatis,itsbehaviordoesnotchangeovertime,thenwecanpredictthefuturethroughthepastbehaviorofthesequence.Thisisexactlytheadvantageoftherandomtimeseriesanalysismodel.ItshouldbenotedthatnoneoftheaboveARMA(p,q)modelscontainsaconstantterm.Ifaconstanttermisincluded,theconstanttermdoesnotaffecttheoriginalpropertiesofthemodel,becausethemodelcontainingtheconstanttermisconvertedtothemodelwithouttheconstanttermthroughappropriatedeformation.

Основни употреби

Timeseriesanalysisiscommonlyusedinthemacro-controlofthenationaleconomy,regionalcomprehensivedevelopmentplanning,businessmanagement,marketpotentialprediction,meteorologicalforecast,hydrologicalforecast,earthquakeprecursorforecast,Croppestsanddiseasesforecast,environmentalpollutioncontrol,ecologicalbalance,astronomyandoceanography.Itmainlyincludesresearchandanalysisfromthefollowingaspects.

Описание на системата

Accordingtothetimeseriesdataobtainedfromtheobservationofthesystem,thecurvefittingmethodisusedtoobjectivelydescribethesystem.

Системен анализ

Whentheobservationsaretakenfrommorethantwovariables,thechangesinonetimeseriescanbeusedtoexplainthechangesintheothertimeseries,Soastogaininsightintothemechanismofagiventimeseries.

Предсказвай бъдещето

Generally,theARMAmodelisusedtofitthetimeseriestopredictthefuturevalueofthetimeseries.

Решение и контрол

Accordingtothetimeseriesmodel,theinputvariablescanbeadjustedtokeepthesystemdevelopmentprocessatthetargetvalue,thatis,whentheprocessispredictedtodeviatefromthetargetThenecessarycontrolcanbecarriedout.

Related Articles
TOP