Метод на най-малките квадрати

>

In1801,ItalianastronomerGiuseppePiazzidiscoveredthefirstasteroidCeres.After40daysoftracking,PiazzilostthepositionofCeresbecauseCeresmovedtothebackofthesun.ThenscientistsallovertheworldusedPiazzi'sobservationaldatatostartsearchingforCeres,butsearchingforCeresbasedontheresultsofmostpeople'scalculationshasnoresults.TheorbitofCerescalculatedbyGauss,whowasonly24yearsold,wasconfirmedbytheobservationsoftheAustrianastronomerHeinrichAlbers,allowingtheastronomicalcommunitytopredicttheprecisepositionofCeres.ThesamemethodalsoproducedmanyastronomicalresultssuchasHalley'sComet.ThemethodusedbyGaussistheleastsquaresmethod,whichwaspublishedinhisbook"OntheMovementofCelestialBodies"in1809.Infact,theFrenchscientistLegendreindependentlyinventedthe"leastsquaresmethod"in1806,butitwasunknownbecauseitwasunknowntotheworld.

In1829,Gaussprovidedproofthattheoptimizationeffectoftheleastsquaresmethodisstrongerthanothermethods.

Определение

Theleastsquaremethod(alsoknownastheleastsquaremethod)isamathematicaloptimizationtechnique.Itfindsthebestfunctionmatchofthedatabyminimizingthesumofsquaresoftheerror.Theleastsquaresmethodcanbeusedtoeasilyobtainunknowndataandminimizethesumofsquarederrorsbetweentheobtaineddataandtheactualdata.

Theleastsquaremethodcanalsobeusedforcurvefitting,andsomeotheroptimizationproblemscanalsobeexpressedbytheleastsquaremethodbyminimizingenergyormaximizingentropy.

Basicidea

Theleastsquaremethodisthemostcommonlyusedmethodtosolvecurvefittingproblems.Thebasicideais:Let

Amongthem,isasetoflinearlyindependentfunctionsselectedinadvance,

istheundeterminedcoefficient,andthefittingcriterionistominimizethesumofsquaresofthedistancebetweenand,Calledtheleastsquarescriterion.

Основен принцип

Да предположим, че (x,y) е двойка наблюдения и отговаря на следните теоретични функции:

Least squares method

където е параметър за определяне.

Inordertofindtheoptimalestimatedvalueoftheparameterofthefunction,foragivengroup(usuallysection>)Observationdata,solvetheobjectivefunction

Taketheminimumparameter.Thistypeofproblemtobesolvediscalledaleastsquaresproblem,andthegeometriclanguageofthemethodtosolvethisproblemiscalledleastsquaresfitting.

Forunconstrainedoptimizationproblems,thegeneralformoftheleastsquaresmethodis:

where

Calledtheresidualfunction.Whenisalinearfunctionof,itiscalledalinearleastsquaresproblem,otherwiseitiscalledanonlinearleastsquaresproblem.

Проблем с оптимизацията на най-малките квадрати

Inunconstrainedoptimizationproblems,therearesomeimportantspecialcases,suchastheobjectivefunctionconsistingofthesumofthesquaresofseveralfunctions.ThistypeoffunctioncangenerallybeWrittenas:

Сред тях обикновено се изисква ≥n. Минимизираме проблема на този тип функция:

Itiscalledtheleastsquaresoptimizationproblem.Leastsquaresoptimizationisaspecialkindofoptimizationproblem.

Оценител на характеристиките на най-малките квадрати

Accordingtothesampledata,theleastsquaresestimatorcanbeusedtoobtaintheestimatorofthesimplelinearregressionmodelparameters.Buthowclosetheestimatorparameteristotheoveralltrueparameter?Whetherthereareotherbetterestimationformulas?Thisinvolvestheleastsquaresestimationformulaortheminimumvariance(orbest)(Best)oftheestimator,linearity(Linear)Andunbiased(Unbiased),referredtoasBLUcharacteristics.Thisisthemainreasonforthewidespreaduseofordinaryleastsquarestoestimateeconometricmodels.Thefollowingprovesthattheordinaryleastsquaresestimatorhastheabovethreecharacteristics.

1. Линейна характеристика

Theso-calledlinearcharacteristicmeansthattheestimatoristhelinearfunctionofthesampleobservationvalue,thatis,thelinearcombinationoftheestimatorandtheobservationvalue.

2. Безпристрастност

Unbiasednessmeansthattheexpectedvalues​​ofparameterestimatorsareequaltotheoveralltrueparameters.

3. Свойство на минимална вариация

Theso-calledminimumvariancepropertyreferstotheminimumvarianceoftheestimatorcomparedwiththeestimatorobtainedbyothermethods,thatis,thebest.Theminimumvarianceisalsocalledeffectiveness.ThispropertyisthefamousGauss-Markov(Gauss-Markov)theorem.Thistheoremstatesthattheordinaryleastsquaresestimatoristhebestcomparedwithanylinearunbiasedestimatorobtainedbyothermethods.

Related Articles
TOP