Алгоритъм за елиптична крива

Алгоритъм за криптиране

Inellipticcurveencryption(ECC),aspecialformofellipticcurveisused,thatis,anellipticcurvedefinedinafinitefield.Theequationisasfollows:

y²=x³+ax+b(modp)

Тук е описанопримерно число,иаидве неотрицателни цели числа,по-малки отp.Те удовлетворяват:

4a³+27b²(modp)≠0къдетоx,y,a,b∈Fp,точката(x,y),която удовлетворява формулата(2)и безкрайна точкаOformanellipseCurveE.

TheellipticcurvediscretelogarithmproblemECDLPisdefinedasfollows:GivenaprimenumberpandanellipticcurveE,forQ=kP,findapositiveintegerklessthanpwhenPandQareknown.ItcanbeprovedthatitiseasiertocalculateQwithkandP,butitismoredifficulttocalculatekfromQandP.Sofar,thereisnoeffectivemethodtosolvethisproblem.Thisistheprincipleoftheellipticcurveencryptionalgorithm.

Сравнение

СравнениеbetweenellipticcurvealgorithmandRSAalgorithm

EllipticcurvepublickeysystemisastrongcompetitortoreplaceRSA.ComparedwiththeRSAmethod,theellipticcurveencryptionmethodhasthefollowingadvantages:(1)Highersecurityperformance.Forexample,160-bitECChasthesamesecuritystrengthas1024-bitRSAandDSA.

(2)Theamountofcalculationissmallandtheprocessingspeedisfast.Intermsoftheprocessingspeedofprivatekeys(decryptionandsignature),ECCismuchfasterthanRSAandDSA.

(3)SmallstoragespaceoccupiedThekeysizeandsystemparametersofECCaremuchsmallerthanRSAandDSA,sothestoragespaceoccupiedismuchsmaller.

(4)ThelowbandwidthrequirementmakesECChaveawiderangeofapplicationprospects.

ThesecharacteristicsofECCmakeitsuretoreplaceRSAandbecomeageneralpublickeyencryptionalgorithm.Forexample,thecreatorsoftheSETprotocolhaveadopteditasthedefaultpublickeycryptographicalgorithminthenext-generationSETprotocol.

Related Articles
TOP