Байесова мрежа

Introduction

Bayesiannetwork,alsoknownasbeliefnetwork,isanextensionofBayesianmethodandiscurrentlyoneofthemosteffectivetheoreticalmodelsinthefieldofuncertainknowledgeexpressionandreasoning.SinceitwasproposedbyPearlin1988,ithasbecomearesearchhotspotinrecentyears.ABayesiannetworkisaDirectedAcyclicGraph(DAG),whichiscomposedofnodesrepresentingvariablesanddirectededgesconnectingthesenodes.Nodesrepresentrandomvariables,andthedirectededgesbetweennodesrepresentthemutualrelationshipbetweennodes(fromtheparentnodetoitschildnodes).Conditionalprobabilityisusedtoexpressthestrengthoftherelationship.Ifthereisnoparentnode,thepriorprobabilityisused.Informationexpression.Thenodevariablecanbeanabstractionofanyproblem,suchas:testvalue,observationphenomenon,opinionconsultation,etc.Itissuitableforexpressingandanalyzinguncertainandprobabilisticevents,appliedtodecision-makingthatconditionallyreliesonmultiplecontrolfactors,andcanmakeinferencesfromincomplete,inaccurateoruncertainknowledgeorinformation.

Математическа дефиниция

НекаG=(I,E)означаванасочена циклична графика( DAG), къдетоIпредставлява набора от всички дези в графиката, аEпредставлява набора от сегменти на насочени свързващи линии и НекаX=(X i)iIе случайна променлива, представена от анод< i>iв неговата насочена циклична графика, ако съвместното разпределение на вероятностите на възелаXможе да бъде изразено като:

тогава X се нарича байесианска мрежа по отношение на насочена циклична графаG, която представлява nodei"причината".

Foranyrandomvariable,thejointdistributioncanbeobtainedbymultiplyingtherespectivelocalconditionalprobabilitydistributions:

Accordingtotheaboveformula,wecancombinethejointdistributionofaBayesiannetworkTheprobabilitydistributioniswrittenas:

(За всяка "зависима" променливаXjспрямо Xi)

Thedifferencebetweentheabovetwoexpressionsliesinthepartoftheconditionalprobability.IntheBayesiannetwork,ifthe"dependent"variableisknown,somenodeswillbeconditionallyindependentfromthe"dependent"variable,andonlyrelatedtothe"dependent"variable.Onlythenodeoftheconditionalprobabilityexists.

Ifthenumberofdependenciesofthejointdistributionisveryrare,usingtheBayesianfunctionmethodcansaveconsiderablememorycapacity.Forexample,ifyouwanttostore10variableswhosevalues​​areall0or1asaconditionalprobabilitytabletype,anintuitiveideaknowsthatwehavetocalculateatotalofvalues;butifthereisnocorrelationamongthese10variables."Ifthe“dependent”variableismorethanthreeormore,thentheconditionalprobabilitytableoftheBayesiannetworkonlyneedstocalculateatmostonevalue.AnotheradvantageoftheBayesianInternetisthatitiseasierforhumanstoknowwhetherthevariablesareconditionallyindependentordependentandthetypeoflocaldistribution(localdistribution)tofindallrandomvariablesThejointdistribution.

Solutionmethod

TheaboveexampleisaverysimpleBayesiannetworkmodel,butifthemodelisverycomplex,thentheenumerationmethodwillbeusedtosolvetheprobability.Itbecomesverycomplicatedanddifficulttocalculate,sootheralternativemethodsmustbeused.Generallyspeaking,Bayesianprobabilitycanbecalculatedinthefollowingways:

Прецизно разсъждение

·

Изброен метод на разсъждение (като горния пример)

·

·

Алгоритъм за елиминиране на променливи (елиминиране на променливи)

·

Случайно разсъждение (метод на МонтеКарло)

·

Алгоритъм за директно вземане на проби

·

·

Отхвърля алгоритъм за вземане на проби

·

·

По същия начин алгоритъм за претегляне

·

·

MarkovchainMonteCarloMarkovchainMonteCarloalgorithm

·

Here,taketheMarkovchainMonteCarloalgorithmasanexample,andthetypeofMarkovchainMonteCarloalgorithmTherearemany,soonlyoneofthestepsofGibbssamplingisexplainedhere:First,fixthevariablewithagivenvalue,andthenrandomlygiveaninitialvaluetotheothervariableswithoutagivenvalue,andthenenterthefollowingiterativesteps:

(1)Изберете произволно една от променливите без дадена стойност

(2)Вземете примерна нова стойност от условното разпределение и след това преизчислете

Aftertheiterativeclumps,deletethepreviousnumbersthatarenotyetstable,andyoucanfindtheapproximateconditionalprobabilitydistribution.TheadvantageoftheMarkovchainMonteCarloalgorithmisthatitisveryefficientwhencomputingalargenetwork,butthedisadvantageisthattheextractedsamplesarenotindependent.

WhenthestructureandparametersontheBayesiannetworkareknown,wecanusetheabovemethodstofindtheprobabilityofaspecificsituation,butifthestructureorparametersontheInternetareunknown,wemustItismoredifficulttoestimatethestructureorparametersofthenetworkbasedontheobserveddata.Generallyspeaking,itismoredifficulttoestimatethestructureofthenetworkthantheparametersonthenode.AccordingtotheunderstandingoftheBayesiannetworkstructureandthecompletenessoftheobservations,wecandivideitintothefollowingfoursituations:

СтруктураBayesian network

Наблюдения

Методи

Известно

Завършено

Метод за оценка на максималната вероятност (MLE)

Известно

Част

EMалгоритъм

Метод за катерене на GreedyHill

Неизвестен

Завършено

Търсене в цялото моделно пространство

Неизвестен

Част

Структурен алгоритъм

EMалгоритъм

Ограничено свиване

Features

1.Bayesiannetworkitselfisanuncertaincausalassociationmodel.Bayesiannetworkisdifferentfromotherdecisionmodels.Ititselfisaprobabilisticknowledgeexpressionandreasoningmodelthatvisualizesmultipleknowledgediagrams,anditmorecloselycontainsthecausalrelationshipandconditionalcorrelationbetweennetworknodevariables.

2.Bayesiannetworkhasastrongabilitytodealwithuncertainproblems.Bayesiannetworkexpressesthecorrelationbetweenvariousinformationelementswithconditionalprobability,andcanlearnandreasonundertheconditionoflimited,incompleteanduncertaininformation.

3.Bayesiannetworkscaneffectivelyexpressandintegratemulti-sourceinformation.Bayesiannetworkcanincorporatevariousinformationrelatedtofaultdiagnosisandmaintenancedecision-makingintothenetworkstructure,andprocessitinaunifiedmanneraccordingtothenode,whichcaneffectivelyintegrateinformationrelatedtotherelationship.

ForBayesiannetworkreasoningresearch,avarietyofapproximatereasoningalgorithmsareproposed,whicharemainlydividedintotwocategories:simulation-basedmethodsandsearch-basedmethods.Inthefieldoffaultdiagnosis,asfarasourhydropowersimulationisconcerned,theprobabilityoffailureisoftenverysmall,soitisgenerallymoresuitabletousesearchinferencealgorithms.Foranexample,wemustfirstanalyzewhichalgorithmmodeltouse:

a.)Ifthenodereliabilitynetworkofthisexampleisasimpledirectedgraphstructure,anditsnumberofnodesissmall,AdopttheprecisereasoningofBayesiannetwork,whichincludesmulti-treepropagationalgorithm,clumptreepropagationalgorithm,graphreductionalgorithm,selecttheappropriatealgorithmfortheinstanceevent;

b.)IfitistheinstanceThegraphstructureofthedrawnnodeiscomplexandthenumberofnodesislarge.Wecanuseapproximatereasoningalgorithmtostudyit.Forspecificimplementation,itisbesttosimplifythecomplexandhugenetwork,andthenconsideritincombinationwithprecisereasoning.

Indailylife,peopleoftenmakecommonsensereasoning,andthiskindofreasoningisusuallyinaccurate.Forexample,ifyouseeapersonwithdamphaircominginandyouthinkitisrainingoutside,thenyoumaybewrong;ifyouseeamanandawomanwithachildinthepark,youthinktheyareafamily,youmayalsoMadeamistake.Inengineering,wealsoneedtomakescientificandreasonablereasoning.However,theproblemsinengineeringpracticearegenerallymorecomplicated,andtherearemanyuncertainfactors.Thisbringsgreatdifficultiestoaccuratereasoning.Longago,uncertaintyreasoningwasanimportantresearchfieldofartificialintelligence.Althoughmanyresearchersinthefieldofartificialintelligenceintroduceothernon-probabilisticprinciples,theyalsobelievethatitispossibletoconstructanduseprobabilisticmethodsbasedoncommonsensereasoning.Inordertoimprovetheaccuracyofreasoning,peopleintroducedprobabilitytheory.TheBayesianNetwork(BayesianNetwork)firstproposedbyJudeaPearlin1988isessentiallyaprobability-baseduncertaintyreasoningnetwork.Itisagraphicalmodelusedtoexpresstheconnectionprobabilityofasetofvariables,anditprovidesawaytoexpresscausalinformation.Atthattime,itwasmainlyusedtodealwithuncertaininformationinartificialintelligence.Subsequently,itgraduallybecamethemainstreamofinformationtechnologytodealwithuncertainty,andithasbeenimportantlyappliedinmanyintelligentsystemsinthefieldsofcomputerintelligencescience,industrialcontrol,andmedicaldiagnosis.

Bayesiantheoryisanimportanttooltodealwithuncertaininformation.Asamethodofuncertaintyreasoningbasedonprobability,Bayesiannetworkshavebeenimportantapplicationsinintelligentsystemsdealingwithuncertaininformation,andhavebeensuccessfullyusedinmedicaldiagnosis,statisticaldecision-making,expertsystems,learningpredictions,etc.field.ThesesuccessfulapplicationsfullydemonstratethatBayesiannetworktechnologyisapowerfulmethodofuncertaintyreasoning.

Нивото на приложение на байесовите мрежи

Байесовите мрежи в момента се използват в мрежи за генериране на изчислителна биология и биоинформатика), протеинова структура, анализ на генна експресия, медицина, класификация на документи, извличане на информация, системи за подпомагане на решения, инженерство), игри и право, синтез на данни, обработка на изображения и др.

Related Articles
TOP